Dr. Adam Larios

Exam 1

SECTION:
No calculators

FULL NAME: Lee e
MATH 308, Differential Equations

1. (8 points) Solve the following initial value problem.
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Answers without full, proper justification will not receive full credit.
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2. (10 points) Solve the following equation up to an arbitrary constant c.
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3. (6 points) Consider the following equation.
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(a) According to the theorems we learned in this class, what is the largest interval of time

for which a solution satisfying y(1) = 5 is guaranteed to exist and be unique?
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(b) According to the theorems we learned in this class, what is the largest interval of time

for which a solution satisfying y(99) = 17 is guaranteed to exist and be unique?
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4. (8 points) Consider the initial value problem given by:

dy _ 1/3,2 _
o = W=7 y(1) =y,
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where we think of yo as a given, fixed number. Is this problem guaranteed to have a

unique solution by the theorems we learned in class? Is there anything that could cause it to
not have a unique solution? Do not solve the equation.
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5. (8 points) Plot a direction field as completely as possible for the following equation, and
sketch the integral curve which passes through the point (1, 2).
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6. (12 points) We saw in class populations with carrying capacities. Suppose a population
P(t) has a carrying capacity of 200, but it also has a threshold, where the population starts

to drop if it is below 100. This can be modeled by

P'=rP(1-£5) (&5 - 1)
where r > 0 is the intrinsic growth rate@”t’tr')" to solve them
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(a) Identify the equilibrium points of this model. Se E ¢ F % TL\”"\ O X P( b )(
S P20, P=noo od Ps(00 dre epuifibyyy .

(b) Draw the corresponding phase line, and identify which equilibria are stable (S), and
which are unstable (U).
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(c) Suppose the initial populatlon is P(0) = Py = 150. Find lim;—o, P(t).
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7. (12 points) A tank initially contains 400L of pure water. Water with a concentration of
4g/L of salt is then pumped into the tank at the rate of 2L /min, and the well-stirred mixture
leaves at the same rate. How long does it take for the concentration of salt in the tank to
become 1g/L? (You do not need to find the decimal value.)
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8. (4 points) Consider the equation: (cos(z) + 3y?) dz + 6zy dy = 0.
Is this equation exact? Justify your answer. Do not solve the equation.
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9. (10 points) Cons1der the equation: —cos?(y) dz + (2z cos(y) sin(y) + y) dy = 0.
This equation is exact. (Don’t check exactness.) Find its solution up to a constant.
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10. (12 points) Consider the equation: gt =y +y°.
Solve the equation up to a constant c. (HINT: Use the substitution v = -Z—, or y = xv.)
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11. (10 points) Consider the problem

Y =ty-2,
y(3) =2.
Use the forward Euler method with step size h = 0.5 to approximate y(4).
Hint: Think about what to and yo are before you begin.

Fovwa E\A\é’r,’ Let Q(t,‘j)’: ty-d.

3*“*\;;““ = ‘C(t“:fﬂn)'

o

‘Af\«'z\ = %y\ ‘*L\ g(tﬁ;(jf\)Tﬂf\*l‘(thn"l)
Leﬂt Sﬂz’l- Qo Ca~rv¢5pmj5 Yo 3(3)

\/\.’Q ‘{’o(/% S{{p' S,‘z{ L\:O«S,éo VQQA *,10 wvrff
cxeps to approximeke 9O, [V =Y(3)

CQ\\L%‘-L&\G’“ | ﬂ‘ ~ \9 (3.5) \
o=, 3 2Ry |
F‘"’L’B‘sf‘i@'o +h(oYe =)
=) 4 0.6(3‘)“33 =3+ 0.5(4)= Y4y =Y
S, .2 k\) gw..é; o\mv\j T~ toth = "%*O»S = 3.b
Sec 5%x¢ )

Y> = % th(ty >
=y +0.50.5)0) ) =4+ 0.5 (-2

=4+ 0.5(n) = U+6 = (0

Wﬂt \OJ

(Note: You probably don’t nieed the whole page for this; this is just extra space.)




