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To do Problem 2.1, it is helpful to have the following lemma (although problem 2.1 can be done
directly).

Lemma 2.1. Suppose that a matrix A is upper-triangular and has an inverse B, then B is also
upper-triangular.

Proof. Proof by induction. Consider a base case of a two by two matrix. Recall that AB = I.
Therefore, a>1b11 + axbr; = 0. However, we know that a;; = 0 because the matrix is upper-
triangular. Therefore, ax;b21 = 0. Note that ay; does not need to equal zero, therefore, b1 must
be zero for the statement AB = I to be generally true. Therefore, B must also be upper-triangular.
Consider an n X n matrix A and it’s inverse B. Note that for any column j except j = n that

n
0= Z anibij. However, ay, is the only non-zero entry of A in this sum. Thus 0 = a,,b,;. Since
i=1
anp is not required to be zero, it must be that b,; is always zero for j # n.
Since A and B are inverses, AB = BA = [. Therefore, considering BA = I we can similarly

n
multiply row j of B with column 1 of A. For all j # 1, we know that 0 = Z anibij = ay1bj1. Since
i=1
a1 is not necessarily zero, it must be that b;; = 0.
By induction, the inverse of A without the first column and row is upper-triangular. We have
shown that the first column and last rows satisfy the conditions for upper triangular. Therefore, the
inverse of an n X n upper-triangular matrix is upper-triangular. U

Corollary 2.1. Suppose that a matrix A is lower-triangular and has an inverse B, then B is also
lower-triangular.

Proof. Since A is lower-triangular, A* is upper-triangular, so by the previous lemma, (A~!)* =
(A*)~!is upper triangular. Thus A~! is lower-triangular. 0

Problem 2.1. Show that if a matrix A is both triangular and unitary, then it is diagonal.

Proof. Without loss of generality, assume that A is lower-triangular. Since A is unitary, A* = A~1.
Since all entries above the diagonal in A are 0, all entries below the diagonal are 0 in A*. Thus A~
is clearly upper-triangular. By Lemma 2.1, A is also upper-triangular. Since A is both upper and
lower triangular, it must be diagonal. U

Problem 2.3 (a). Let A € C™*" be hermitian. An eigenvector of A is a nonzero vector x € C"
such that Ax = Ax for some A € C, the corresponding eigenvalue. Prove that all eigenvalues of A

are real.
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Proof. Observe,
Ax = Ax

X*Ax = x"Ax

X*Ax = Ax*x.
Also,

(Ax)* = (Ax)x*

XA* =x*A

X*A*x = Ax*x.
Since A is self-adjoint,

Ax*x = x*(Ax) = x*Ax = x*A*x = (Ax)*x = (Ax)*x = Ax*x.

Since x # 0, x*x = ||x||? # 0, so we can divide by x*x to find that A = A. This can only be true if

A is real. Therefore, all eigenvalues of a self-adjoint matrix are real.
O

Problem 2.3 (b). Prove that if x and y are eigenvectors corresponding to distinct eigenvalues, then
x and y are orthogonal.

Proof. Suppose that A1, A, are the eigenvalues corresponding to eigenvectors x and y respectively
and A; # A,.
First note that x -y = x*y. Observe,
Mx'y = (Mix)7y
= (Ax)"y
= x"Ay
=x"(Ay)
=x"Ayy

Therefore, (1] — A2)(x*y) = 0. Since A; # A it follows that (x*y) = x-y = 0. In conclusion, x
and y must be orthogonal. U

Problem 2.5(a). Let S € C"*"™ be skew-hermitian (§* = —S). Show by using exercise 2.3 that the
eigenvalues of S are pure imaginary.

Proof. Let A € C be an eigenvalue of S. Observe,
Sx = Ax
xX"Sx = x"Ax

xSx = Ax*x
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Also,
(Sx)* = (Ax)x*

xXS*=x"A

xS x = Ax*x

Since A is skew-hermitian, Ax*x = x*Ax = —1(x*A*x) = —1(Ax*x). It follows that A = —A. This
can only be true if A is imaginary. Therefore, all eigenvalues of of a skew-hermitian matrix are
imaginary. U

Problem 2.5(b). Show that I — S is nonsingular (invertible).

Proof. By the invertible matrix theorem, if (I —S) is singular then there exists a solution to (7 —
§)x = 0 where x is not the zero vector.

Assume that (I —S) is singular. Therefore, (I —S)x = 0 and Ix = Sx. Since x is non-zero
and S invertible, there exists an eigenvalue A such that Sx = Ax. However, the only possible
solution when /x = Sx = Ax is that A = 1. This contradicts part a which shows that all eigenvalues
are imaginary. Therefore, we contradict our assumption that (I —S) is singular and it must be
nonsingular. U

Problem 2.5(c). Show that the matrix Q = (I —S)~!(I +S), known as the Cayley transform of
S, is unitary. (This is a matrix analogue of a linear fractional transformation (1 +s)(1 —s), which
maps the left half of the complex s-plane conformally onto the unit disk.)

Proof. First consider Q*. Note,
Q' =((I-8)""I+8)) =I+S)*U-8) " =U-S)I+S)"".

Therefore, Q0+ = (I—8) ' (I+S)(I—S)(I+S)~!. Note, (I+S)(I—S) = (I+S)I—(I+
S)S=1+S—S—SS. Further (I—S)(I+S)=(I—-S)[+(I-S)S=1—S+S5—SS. It follows that
(I+S)(I—-S)=(I-S)(I+5S).

In conclusion, Q0 = (I—S) ' (I+S)(I=S)(I+S) ' =(1-S) "1 (U-S)(I+S)(I+S) =1L
Therefore, Q must be unitary. U



