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To do Problem 2.1, it is helpful to have the following lemma (although problem 2.1 can be done
directly).

Lemma 2.1. Suppose that a matrix A is upper-triangular and has an inverse B, then B is also
upper-triangular.

Proof. Proof by induction. Consider a base case of a two by two matrix. Recall that AB = I.
Therefore, a21b11 + a22b21 = 0. However, we know that a21 = 0 because the matrix is upper-
triangular. Therefore, a22b21 = 0. Note that a22 does not need to equal zero, therefore, b21 must
be zero for the statement AB = I to be generally true. Therefore, B must also be upper-triangular.

Consider an n× n matrix A and it’s inverse B. Note that for any column j except j = n that

0 =
n

∑
i=1

anibi j. However, ann is the only non-zero entry of A in this sum. Thus 0 = annbn j. Since

ann is not required to be zero, it must be that bn j is always zero for j 6= n.
Since A and B are inverses, AB = BA = I. Therefore, considering BA = I we can similarly

multiply row j of B with column 1 of A. For all j 6= 1, we know that 0 =
n

∑
i=1

anibi j = a11b j1. Since

a11 is not necessarily zero, it must be that b j1 = 0.
By induction, the inverse of A without the first column and row is upper-triangular. We have

shown that the first column and last rows satisfy the conditions for upper triangular. Therefore, the
inverse of an n×n upper-triangular matrix is upper-triangular. �

Corollary 2.1. Suppose that a matrix A is lower-triangular and has an inverse B, then B is also
lower-triangular.

Proof. Since A is lower-triangular, A∗ is upper-triangular, so by the previous lemma, (A−1)∗ =
(A∗)−1 is upper triangular. Thus A−1 is lower-triangular. �

Problem 2.1. Show that if a matrix A is both triangular and unitary, then it is diagonal.

Proof. Without loss of generality, assume that A is lower-triangular. Since A is unitary, A∗ = A−1.
Since all entries above the diagonal in A are 0, all entries below the diagonal are 0 in A∗. Thus A−1

is clearly upper-triangular. By Lemma 2.1, A is also upper-triangular. Since A is both upper and
lower triangular, it must be diagonal. �

Problem 2.3 (a). Let A ∈ Cm×m be hermitian. An eigenvector of A is a nonzero vector x ∈ Cm

such that Ax = λx for some λ ∈ C, the corresponding eigenvalue. Prove that all eigenvalues of A
are real.
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Proof. Observe,

Ax = λx

x∗Ax = x∗λx

x∗Ax = λx∗x.

Also,

(Ax)∗ = (λx)∗

x∗A∗ = x∗λ

x∗A∗x = λx∗x.

Since A is self-adjoint,

λx∗x = x∗(λx) = x∗Ax = x∗A∗x = (Ax)∗x = (λx)∗x = λx∗x.

Since x 6=~0, x∗x = ‖x‖2 6= 0, so we can divide by x∗x to find that λ = λ . This can only be true if
λ is real. Therefore, all eigenvalues of a self-adjoint matrix are real.

�

Problem 2.3 (b). Prove that if x and y are eigenvectors corresponding to distinct eigenvalues, then
x and y are orthogonal.

Proof. Suppose that λ1,λ2 are the eigenvalues corresponding to eigenvectors x and y respectively
and λ1 6= λ2.

First note that x · y = x∗y. Observe,

λ1x∗y = (λ1x)∗y
= (Ax)∗y
= x∗Ay

= x∗(Ay)
= x∗λ2y

Therefore, (λ1−λ2)(x∗y) = 0. Since λ1 6= λ2 it follows that (x∗y) = x · y = 0. In conclusion, x
and y must be orthogonal. �

Problem 2.5(a). Let S ∈Cm×m be skew-hermitian (S∗ =−S). Show by using exercise 2.3 that the
eigenvalues of S are pure imaginary.

Proof. Let λ ∈ C be an eigenvalue of S. Observe,

Sx = λx

x∗Sx = x∗λx

x∗Sx = λx∗x
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Also,

(Sx)∗ = (λx)∗

x∗S∗ = x∗λ

x∗S∗x = λx∗x

Since A is skew-hermitian, λx∗x = x∗Ax =−1(x∗A∗x) =−1(λx∗x). It follows that λ =−λ . This
can only be true if λ is imaginary. Therefore, all eigenvalues of of a skew-hermitian matrix are
imaginary. �

Problem 2.5(b). Show that I−S is nonsingular (invertible).

Proof. By the invertible matrix theorem, if (I− S) is singular then there exists a solution to (I−
S)x = 0 where x is not the zero vector.

Assume that (I − S) is singular. Therefore, (I − S)x = 0 and Ix = Sx. Since x is non-zero
and S invertible, there exists an eigenvalue λ such that Sx = λx. However, the only possible
solution when Ix = Sx = λx is that λ = 1. This contradicts part a which shows that all eigenvalues
are imaginary. Therefore, we contradict our assumption that (I− S) is singular and it must be
nonsingular. �

Problem 2.5(c). Show that the matrix Q = (I− S)−1(I + S), known as the Cayley transform of
S, is unitary. (This is a matrix analogue of a linear fractional transformation (1 + s)(1− s), which
maps the left half of the complex s-plane conformally onto the unit disk.)

Proof. First consider Q∗. Note,

Q∗ = ((I−S)−1(I + S))∗ = (I + S)∗(I−S)−∗ = (I−S)(I + S)−1.

Therefore, QQ∗ = (I− S)−1(I + S)(I− S)(I + S)−1. Note, (I + S)(I− S) = (I + S)I− (I +
S)S = I +S−S−SS. Further (I−S)(I +S) = (I−S)I +(I−S)S = I−S+S−SS. It follows that
(I + S)(I−S) = (I−S)(I + S).

In conclusion, QQ∗= (I−S)−1(I +S)(I−S)(I +S)−1 = (I−S)−1(I−S)(I +S)(I +S)−1 = I.
Therefore, Q must be unitary. �


