MATH 447/847 **HOMEWORK 2 SOLUTIONS** SPRING 2015

Problem 3.1. Prove that if W is an arbitrary nonsingular matrix, the function $|| \cdot ||_W$ defined by (3.3) is a vector norm.

Proof. The function is a norm if $||x||_W = 0$ if and only if $x = \vec{0}$, $||cx||_W = |c|||x||_W$ for a scalar *c*, and it satisfies the triangle inequality.

Note $||x|| \ge 0$ for all $x \ne \vec{0}$. Further, W cannot be the zero matrix because it is nonsingular. Thus, $||x||_{w} = ||Wx||$ and $Wx = \vec{0}$ if and only if x is the zero vector. Therefore, $||x||_{W} = 0$ if and only if $x = \vec{0}$.

Let c be a scalar. Observe, $||cx||_W = ||cWx|| = |c|||Wx|| = |c|||x||_W$. Therefore, $||cx||_W =$ $|c|||x||_{W}$.

Let x, y be vectors. Observe, $||x + y||_W = ||W(x + y)|| = ||Wx + Wy|| \le ||Wx|| + ||Wy|| =$ $||x||_{W} + ||y||_{W}$. Therefore, $||x + y||_{W} \le ||x||_{W} + ||y||_{W}$.

Since the function satisfies all three criteria, it is a norm.

Problem 3.2. Let $||\cdot||$ denote any norm on \mathbb{C}^m and also the induced matrix norm on $\mathbb{C}^{m \times m}$. Show that $\rho(A) \leq ||A||$, where $\rho(A)$ is the spectral radius of A, i.e., the largest absolute value $|\lambda|$ of an eigenvalue λ of A.

Proof. Let λ by any eigenvalue of A with corresponding eigenvector to x. Note that $|\lambda|||x|| =$ $||\lambda x|| = ||Ax|| \le ||A||||x||$. This implies that $|\lambda| \le ||A||$ for all eigenvalues λ . Since $\rho(A)$ is defined to be the absolute value of the largest (in absolute value) eigenvalue, we have $\rho(A) \leq ||A||$.

Problem 3.3. Vector and matrix *p*-norms are related by various inequalities, often involving the dimensions m or n. For each of the following, verify the inequality and give an example of a nonzero vector or matrix (for general, m, n) for which the equality is achieved. In this problem x is an *m*-vector and A is an $m \times n$ matrix.

(1) $||x||_{\infty} \leq ||x||_{2}$

Observe, $||x||_{\infty} = \max_{1 \le i \le m} |x_i| = \max_{1 \le i \le m} \sqrt{|x_i|^2} \le ||x||_2$. Equality is achieved when the vector has a singular non-zero value.

(2) $||x||_2 \leq \sqrt{m} ||x||_{\infty}$

Observe $||x||_2 = \sqrt{\sum_{i=1}^{m} |x_i|^2} \le \sqrt{\sum_{i=1}^{m} |\max_{1 \le j \le m} x_i|^2} = \sqrt{m} \max_{1 \le j \le m} x_i = \sqrt{m} ||x||_{\infty}$. Equality is attained when x is the one vector.

(3) $||A||_{\infty} \leq \sqrt{n} ||A||_2$ $\begin{array}{l} ||x||_{\infty} = \sqrt{n} ||x||_{2} \\ \text{Observe}, ||A||_{\infty} = \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}}. \text{ By part a, } \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} \leq \sup_{x \neq 0} \frac{||Ax||_{2}}{||x||_{\infty}}. \text{ Rearranging part } \\ b, \frac{1}{\sqrt{m}} ||x||_{2} \leq ||x||_{\infty}. \text{ Therefore, } \sup_{x \neq 0} \frac{||Ax||_{2}}{||x||_{\infty}} \leq \sup_{x \neq 0} \frac{\sqrt{n} ||Ax||_{2}}{||x||_{2}} = \sqrt{n} ||x||_{2}. \text{ In conclusion, } \end{array}$ $||A||_{\infty} < \sqrt{n} ||A||_{2}$

Equality is attained when A is a matrix with one row of all ones and zeros elsewhere. Since $||A||_{\infty}$ is the max row sum, it is n. Now $||A||_2 = \sup_{i=1} \sum_{i=1}^m s_i$ where s_i is the *i*th row sum of A (because ||x|| = 1). Thus $||A||_2 = \sqrt{n}$ and $\sqrt{n}||A||_2 = n$. (4) $||A||_2 \le \sqrt{m}||A||_{\infty}$ Observe, $||A||_2 = \sup_{x\neq 0} \frac{||Ax||_2}{||x||_2}$. By part b, $\sup_{x\neq 0} \frac{||Ax||_2}{||x||_2} \le \sup_{x\neq 0} \frac{\sqrt{m}||Ax||_{\infty}}{||x||_2}$. By part a, $\sup_{x\neq 0} \frac{\sqrt{m}||Ax||_{\infty}}{||x||_2} \le \sup_{x\neq 0} \frac{\sqrt{m}||Ax||_{\infty}}{||x||_2} \le \sup_{x\neq 0} \frac{\sqrt{m}||Ax||_{\infty}}{||x||_{\infty}} = \sqrt{m}||A||_{\infty}$. Therefore, $||A||_2 \le \sqrt{m}||A||_{\infty}$. Equality is attained when A is a matrix with one column of all ones and zeros elsewhere. Note $||A||_{\infty} = 1$ because it is the max row sum. Thus $\sqrt{m}||A||_{\infty} = \sqrt{m}$. Further $||A||_2 = \sqrt{m}$.

Problem 3.6(a). Let $||\cdot||$ denote any norm on \mathbb{C}^m . The corresponding dual norm $||\cdot||'$ is defined by the formula $||x||' = sup_{||y||=1}|y * x|$. Prove that $||\cdot||'$ is a norm.

Proof. We must show that $|| \cdot ||'$ satisfies the three norm axioms. Step 1: Show that ||x||' = 0 if and only if $x = \vec{0}$.

Suppose that ||x||' = 0. It follows that $\sup_{||y||=1} |y^*x| = 0$. Since the maximum of the positive values $|y^*x|$ is zero, we must have $|y^*x| = 0$ (i.e., $y^*x = 0$) for all y such that ||y|| = 1. We can choose a special y to show that x must the be zero. Suppose that $x \neq \vec{0}$. Then let us choose y = x/||x||. Then ||y|| = 1, and

$$\|x\| = \frac{\|x\|^2}{\|x\|} = \frac{x^*x}{\|x\|} = \frac{x^*}{\|x\|}x = \left(\frac{x}{\|x\|}\right)^*x = y^*x = 0$$

So our assumption that $x \neq \vec{0}$ is false, and we must have $x = \vec{0}$. Thus, if ||x||' = 0 then $x = \vec{0}$.

Next, suppose $x = \vec{0}$. Then $|y^*\vec{0}| = 0$ for any y. Therefore, if $x = \vec{0}$ then $||x||' = \sup_{||y||=1} |y^*x| = \sup_{||y||=1} 0 = 0$.

Step 2: Show that ||ax||' = |a|||x||' for any scalar *a* and vector *x*.

Let *a* be a scalar and *x* a vector. Observe $||ax||' = \sup_{||y||=1} |y^*ax| = \sup_{||y||=1} |a||y^*x| = |a| \sup_{||y||=1} |y^*x| = |a|||x||'$. Therefore, ||ax||' = |a|||x||'.

Step 3: Show that $||x + z||' \le ||x||' + ||z||'$ for all vectors x and z. Let x, z be vectors. Observe, $||x + z||' = \sup_{||y||=1} |y^*(x+z)| = \sup_{||y||=1} |y^*x + y^*z| \le \sup_{||y||=1} |y^*x| + |y^*z| = \sup_{||y||=1} |y^*z| = ||x||'||z||'$. Therefore, $||x + z||' \le ||x||' + ||z||'$.

Since $|| \cdot ||'$ satisfies all three conditions, it is a norm.