MATH 447/847 HOMEWORK 2 SOLUTIONS SPRING 2015

Problem 3.1. Prove that if *W* is an arbitrary nonsingular matrix, the function $|| \cdot ||_W$ defined by (3.3) is a vector norm.

Proof. The function is a norm if $||x||_W = 0$ if and only if $x = \vec{0}$, $||cx||_W = |c|||x||_W$ for a scalar *c*, and it satisfies the triangle inequality.

Note $||x|| \ge 0$ for all $x \ne 0$. Further, *W* cannot be the zero matrix because it is nonsingular. Thus, $||x||_w = ||Wx||$ and $Wx = \vec{0}$ if and only if *x* is the zero vector. Therefore, $||x||_w = 0$ if and only if $x=\overline{0}$.

Let *c* be a scalar. Observe, $||cx||_W = ||cWx|| = |c|||Wx|| = |c|||x||_W$. Therefore, $||cx||_W =$ $|c|||x||_W$.

Let *x*, *y* be vectors. Observe, $||x + y||_W = ||W(x + y)|| = ||W(x + Wy|| \le ||Wx|| + ||Wy|| =$ $||x||_W + ||y||_W$. Therefore, $||x+y||_W \le ||x||_W + ||y||_W$.

Since the function satisfies all three criteria, it is a norm. \Box

Problem 3.2. Let $||\cdot||$ denote any norm on \mathbb{C}^m and also the induced matrix norm on $\mathbb{C}^{m\times m}$. Show that $\rho(A) \le ||A||$, where $\rho(A)$ is the spectral radius of A, i.e., the largest absolute value $|\lambda|$ of an eigenvalue λ of *A*.

Proof. Let λ by any eigenvalue of A with corresponding eigenvector to x. Note that $|\lambda||x|| =$ $||\lambda x|| = ||Ax|| \le ||A|| ||x||$. This implies that $|\lambda| \le ||A||$ for all eigenvalues λ . Since $\rho(A)$ is defined to be the absolute value of the largest (in absolute value) eigenvalue, we have $\rho(A) \leq ||A||$. \square

Problem 3.3. Vector and matrix *p*-norms are related by various inequalities, often involving the dimensions *m* or *n*. For each of the following, verify the inequality and give an example of a nonzero vector or matrix (for general, m, n) for which the equality is achieved. In this problem x is an *m*-vector and *A* is an $m \times n$ matrix.

(1) ||*x*||[∞] ≤ ||*x*||²

Observe, $||x||_{\infty} = \max_{1 \le i \le m} |x_i| = \max_{1 \le i \le m} \sqrt{|x_i|^2} \le ||x||_2$. Equality is achieved when the vector has a singular non-zero value.

(2) $||x||_2 \le \sqrt{m}||x||_{\infty}$

Observe $||x||_2 =$ s *m* $\sum_{i=1}$ $|x_i|^2 \leq$ s *m* $\sum_{i=1}$ $|\max_{1 \leq j \leq m} x_i|^2 = \sqrt{}$ \overline{m} max_{1≤*j*≤*m* x_i =} √ *m*||*x*||∞. Equality

is attained when x is the one vector.

(3) $||A||_{∞} \le \sqrt{n} ||A||_2$ $\text{Observe}, ||A||_{\infty} = \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}}$ $\frac{|Ax||_{\infty}}{||x||_{\infty}}$. By part a, sup_{*x*≠0} $\frac{||Ax||_{\infty}}{||x||_{\infty}}$ $\frac{|Ax||_{\infty}}{||x||_{\infty}}\leq \sup_{x\neq 0} \frac{||Ax||_2}{||x||_{\infty}}$ $\frac{|AX||2}{||x||_{\infty}}$. Rearranging part $b, \frac{1}{\sqrt{2}}$ $\frac{1}{m}$ | $|x||_2 \le ||x||_{\infty}$. Therefore, sup_{*x≠*0} $\frac{||Ax||_2}{||x||_{\infty}}$ $\frac{|AX||_2}{||x||_{\infty}}$ ≤ sup_{*x*≠0} $\frac{1}{\sqrt{n}||Ax||_2}$ $\frac{n||Ax||_2}{||x||_2} =$ √ $||2 \leq ||x||_{\infty}$. Therefore, $\sup_{x \neq 0} \frac{||Ax||_2}{||x||_{\infty}} \leq \sup_{x \neq 0} \frac{\sqrt{n}||Ax||_2}{||x||_2} = \sqrt{n}||x||_2$. In conclusion, $||A||_{∞} \leq \sqrt{n}||A||_2.$

Equality is attained when *A* is a matrix with one row of all ones and zeros elsewhere. Since $||A||_{\infty}$ is the max row sum, it is *n*. Now $||A||_2 = \sup_{||x||=1}$ *m* $\sum_{i=1}$ s_i where s_i is the *i*th row sum of *A* (because $||x|| = 1$). Thus $||A||_2 =$ *n* (because $||x|| = 1$). Thus $||A||_2 = \sqrt{n}$ and $\sqrt{n}||A||_2 = n$. (4) ||*A*||² ≤ *m*||*A*||[∞] Observe, $||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2}$ $\frac{|Ax||_2}{||x||_2}$. By part b, $\sup_{x\neq 0} \frac{||Ax||_2}{||x||_2}$ $\frac{|AX||_2}{||x||_2} \leq \sup_{x \neq 0}$ √ *m*||*Ax*||[∞] $\frac{n||Ax||_{\infty}}{||x||_2}$. By part a, $\sup_{x\neq 0}$ √ *m*||*Ax*||[∞] $\frac{n||Ax||_{\infty}}{||x||_2} \leq \sup_{x \neq 0}$ $\frac{|x||^2}{\sqrt{m}||Ax||_{\infty}}$ $\frac{n||Ax||_{\infty}}{||x||_{\infty}} =$ √ \overline{m} ||A||∞. Therefore, ||A||₂ ≤ √ *m*||*A*||∞. Equality is attained when \vec{A} is a matrix with one column of all ones and zeros elsewhere. Equality is attained when A is a matrix with one column of an ones and zeros eisewhere.
Note $||A||_{\infty} = 1$ because it is the max row sum. Thus $\sqrt{m}||A||_{\infty} = \sqrt{m}$. Further $||A||_2 =$ s *m* $\sum_{i=1}$ $1 =$ √ \overline{m} . Thus, $||A||_2 =$ √ $\overline{m}||A||_{\infty} =$ √ *m*.

Problem 3.6(a). Let $||\cdot||$ denote any norm on \mathbb{C}^m . The corresponding dual norm $||\cdot||'$ is defined by the formula $||x||' = \sup_{||y||=1} |y * x|$. Prove that $|| \cdot ||'$ is a norm.

Proof. We must show that $\|\cdot\|'$ satisfies the three norm axioms. Step 1: Show that $||x||' = 0$ if and only if $x = \vec{0}$.

Suppose that $||x||' = 0$. It follows that $sup_{||y||=1} |y^*x| = 0$. Since the maximum of the positive values $|y^*x|$ is zero, we must have $|y^*x| = 0$ (i.e., $y^*x = 0$) for all y such that $||y|| = 1$. We can choose a special *y* to show that *x* must the be zero. Suppose that $x \neq 0$. Then let us choose $y = x/||x||$. Then $\|y\| = 1$, and

$$
||x|| = \frac{||x||^2}{||x||} = \frac{x^*x}{||x||} = \frac{x^*}{||x||}x = \left(\frac{x}{||x||}\right)^* x = y^*x = 0
$$

So our assumption that $x \neq \vec{0}$ is false, and we must have $x = \vec{0}$. Thus, if $||x||' = 0$ then $x = \vec{0}$.

Next, suppose $x = \vec{0}$. Then $|y^*\vec{0}| = 0$ for any *y*. Therefore, if $x = \vec{0}$ then $||x||' = \sup_{||y||=1} |y^*x| =$ $\sup_{||y||=1} 0 = 0.$

Step 2: Show that $||ax||' = |a|||x||'$ for any scalar *a* and vector *x*.

Let *a* be a scalar and *x* a vector. Observe $||ax||' = \sup_{||y||=1} |y^*ax| = \sup_{||y||=1} |a||y^*x| = |a| \sup_{||y||=1} |y^*x| =$ $|a|||x||'$. Therefore, $||ax||' = |a|||x||'$.

Step 3: Show that $||x+z||' \le ||x||' + ||z||'$ for all vectors *x* and *z*. $\frac{1}{\text{Let } x, z}$ be vectors. Observe, $||x+z||' = \sup_{||y||=1} |y^*(x+z)| = \sup_{||y||=1} |y^*x+y^*z| \leq \sup_{||y||=1} |y^*x| +$ $|y^*z| = \sup_{\{|y\|=1} |y^*x + \sup_{\{|y\|=1} |y^*z| = |\{|x||'|\,|\overline{z}| \}}$. Therefore, $||x + \overline{z}||' \leq ||x||' + ||z||'$. Since $|| \cdot ||'$ satisfies all three conditions, it is a norm.