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Problem 3.1. Prove that if W is an arbitrary nonsingular matrix, the function || · ||W defined by
(3.3) is a vector norm.

Proof. The function is a norm if ||x||W = 0 if and only if x =~0, ||cx||W = |c|||x||W for a scalar c,
and it satisfies the triangle inequality.

Note ||x|| ≥ 0 for all x 6=~0. Further, W cannot be the zero matrix because it is nonsingular. Thus,
||x||w = ||Wx|| and Wx =~0 if and only if x is the zero vector. Therefore, ||x||W = 0 if and only if
x =~0.

Let c be a scalar. Observe, ||cx||W = ||cWx|| = |c|||Wx|| = |c|||x||W . Therefore, ||cx||W =
|c|||x||W .

Let x,y be vectors. Observe, ||x + y||W = ||W (x + y)|| = ||Wx + Wy|| ≤ ||Wx||+ ||Wy|| =
||x||W + ||y||W . Therefore, ||x + y||W ≤ ||x||W + ||y||W .

Since the function satisfies all three criteria, it is a norm. �

Problem 3.2. Let || · || denote any norm on Cm and also the induced matrix norm on Cm×m. Show
that ρ(A) ≤ ||A||, where ρ(A) is the spectral radius of A, i.e., the largest absolute value |λ | of an
eigenvalue λ of A.

Proof. Let λ by any eigenvalue of A with corresponding eigenvector to x. Note that |λ |||x|| =
||λx||= ||Ax|| ≤ ||A||||x||. This implies that |λ | ≤ ||A|| for all eigenvalues λ . Since ρ(A) is defined
to be the absolute value of the largest (in absolute value) eigenvalue, we have ρ(A) ≤ ||A||. �

Problem 3.3. Vector and matrix p-norms are related by various inequalities, often involving the
dimensions m or n. For each of the following, verify the inequality and give an example of a non-
zero vector or matrix (for general, m,n) for which the equality is achieved. In this problem x is an
m-vector and A is an m×n matrix.

(1) ||x||∞ ≤ ||x||2
Observe, ||x||∞ = max1≤i≤m |xi| = max1≤i≤m

√
|xi|2) ≤ ||x||2. Equality is achieved when

the vector has a singular non-zero value.
(2) ||x||2 ≤

√
m||x||∞

Observe ||x||2 =

√
m

∑
i=1
|xi|2 ≤

√
m

∑
i=1
| max

1≤ j≤m
xi|2 =

√
mmax1≤ j≤m xi =

√
m||x||∞. Equality

is attained when x is the one vector.
(3) ||A||∞ ≤

√
n||A||2

Observe,||A||∞ = supx 6=0
||Ax||∞
||x||∞ . By part a, supx 6=0

||Ax||∞
||x||∞ ≤ supx 6=0

||Ax||2
||x||∞ . Rearranging part

b, 1√
m ||x||2 ≤ ||x||∞. Therefore, supx 6=0

||Ax||2
||x||∞ ≤ supx 6=0

√
n||Ax||2
||x||2 =

√
n||x||2. In conclusion,

||A||∞ ≤
√

n||A||2.
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Equality is attained when A is a matrix with one row of all ones and zeros elsewhere.

Since ||A||∞ is the max row sum, it is n. Now ||A||2 = sup||x||=1

m

∑
i=1

si where si is the ith row

sum of A (because ||x||= 1). Thus ||A||2 =
√

n and
√

n||A||2 = n.
(4) ||A||2 ≤

√
m||A||∞

Observe, ||A||2 = supx 6=0
||Ax||2
||x||2 . By part b, supx 6=0

||Ax||2
||x||2 ≤ supx 6=0

√
m||Ax||∞
||x||2 . By part a,

supx 6=0

√
m||Ax||∞
||x||2 ≤ supx 6=0

√
m||Ax||∞
||x||∞ =

√
m||A||∞. Therefore, ||A||2 ≤

√
m||A||∞.

Equality is attained when A is a matrix with one column of all ones and zeros elsewhere.
Note ||A||∞ = 1 because it is the max row sum. Thus

√
m||A||∞ =

√
m. Further ||A||2 =√

m

∑
i=1

1 =
√

m. Thus, ||A||2 =
√

m||A||∞ =
√

m.

Problem 3.6(a). Let || · || denote any norm on Cm. The corresponding dual norm || · ||′ is defined
by the formula ||x||′ = sup||y||=1|y∗ x|. Prove that || · ||′ is a norm.

Proof. We must show that ‖ · ‖′ satisfies the three norm axioms.
Step 1: Show that ||x||′ = 0 if and only if x =~0.

Suppose that ||x||′ = 0. It follows that sup||y||=1|y∗x| = 0. Since the maximum of the positive
values |y∗x| is zero, we must have |y∗x|= 0 (i.e., y∗x = 0) for all y such that ‖y‖= 1. We can choose
a special y to show that x must the be zero. Suppose that x 6=~0. Then let us choose y = x/‖x‖.
Then ‖y‖= 1, and

‖x‖=
‖x‖2

‖x‖
=

x∗x
‖x‖

=
x∗

‖x‖
x =

(
x
‖x‖

)∗
x = y∗x = 0

So our assumption that x 6=~0 is false, and we must have x =~0. Thus, if ||x||′ = 0 then x =~0.
Next, suppose x =~0. Then |y∗~0|= 0 for any y. Therefore, if x =~0 then ||x||′ = sup||y||=1 |y∗x|=

sup||y||=1 0 = 0.

Step 2: Show that ||ax||′ = |a|||x||′ for any scalar a and vector x.

Let a be a scalar and x a vector. Observe ||ax||′= sup||y||=1 |y∗ax|= sup||y||=1 |a||y∗x|= |a|sup||y||=1 |y∗x|=
|a|||x||′. Therefore, ||ax||′ = |a|||x||′.

Step 3: Show that ||x + z||′ ≤ ||x||′+ ||z||′ for all vectors x and z.
Let x,z be vectors. Observe, ||x+z||′= sup||y||=1 |y∗(x+z)|= sup||y||=1 |y∗x+y∗z| ≤ sup||y||=1 |y∗x|+
|y∗z|= sup||y||=1 |y∗x + sup||y||=1 |y∗z|= ||x||′||z||′. Therefore, ||x + z||′ ≤ ||x||′+ ||z||′.

Since || · ||′ satisfies all three conditions, it is a norm. �


