MATH 447/847 HOMEWORK 3 SOLUTIONS SPRING 2015

Problem 4.1(a). Determine the SVD of $A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$ Note, $A^*A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$. Suppose $x \neq \vec{0}$ and $(A^*A - \lambda I)x = 0$. It must be that det $(A^*A - \lambda I) =$ det $\begin{bmatrix} 9 - \lambda & 0 \\ 0 & 4 - \lambda \end{bmatrix} = 0$. Thus, $(9 - \lambda)(4 - \lambda) = 0$ and $\lambda_1 = 9, \lambda_2 = 4$. For the first eigenvector consider $(A^*A - \lambda_1 I)x = 0$. Observe, $(A^*A - \lambda_1 I)x = \begin{bmatrix} 0 & 0 \\ 0 & -5 \end{bmatrix} x = 0$. Thus, $-5x_2 = 0, x_2 = 0$ and x_1 is free. Let $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. For the second eigenvector consider $(A^*A - \lambda_2 I)x = 0$. Observe, $(A^*A - \lambda_2 I)x = \begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix} x = 0$. Thus, $5x_1 = 0, x_1 = 0$ and x_2 is free. Let $x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. It follows that $V = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Observe, $\Sigma = \begin{bmatrix} \sqrt{9} & 0 \\ 0 & \sqrt{4} \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. Recall U is AV with each element of column i divided by σ_i . Thus, $AV = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$ and $U = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. In conclusion, $A = U\Sigma V^*$ as they are defined above and thus they compose the SVD of A. That

$$\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \sqrt{9} & 0 \\ 0 & \sqrt{4} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^*$$

is,

Problem 4.1(b). Determine the SVD of $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ Note, $A^*A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$. Suppose $x \neq \vec{0}$ and $(A^*A - \lambda I)x = 0$. It must be that det $(A^*A - \lambda I) = det \begin{bmatrix} 4 - \lambda & 0 \\ 0 & 9 - \lambda \end{bmatrix} = 0$. Thus, $(9 - \lambda)(4 - \lambda) = 0$ and $\lambda_1 = 9$, $\lambda_2 = 4$. For the first eigenvector consider $(A^*A - \lambda_1 I)x = 0$. Observe, $(A^*A - \lambda_1 I)x = \begin{bmatrix} -5 & 0 \\ 0 & 0 \end{bmatrix} x = 0$. Thus, $-5x_1 = 0$, $x_1 = 0$ and x_2 is free. Let $x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. For the second eigenvector consider $(A^*A - \lambda_2 I)x = 0$. Observe, $(A^*A - \lambda_2 I)x = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} x = 0$. Thus, $5x_2 = 0$, $x_2 = 0$ and x_1 is free. Let $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. It follows that $V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Observe, $\Sigma = \begin{bmatrix} \sqrt{9} & 0 \\ 0 & \sqrt{4} \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. Note, $AV = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$. Thus, $U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. In conclusion, $A = U\Sigma V^*$ as they are defined above and thus they compose the SVD of A.

Problem 4.1(c). Determine the SVD of $A = \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ Note, $A^*A = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$. Suppose $x \neq \vec{0}$ and $(A^*A - \lambda I)x = 0$. It must be that $\det(A^*A - \lambda I) = \det \begin{bmatrix} 4 - \lambda & 0 \\ 0 & -\lambda \end{bmatrix} = 0$. Thus, $(4 - \lambda)(-\lambda) = 0$ and $\lambda_1 = 4$, $\lambda_2 = 0$. For the first eigenvector consider $(A^*A - \lambda_1 I)x = 0$. Observe, $(A^*A - \lambda_1 I)x = \begin{bmatrix} 0 & 0 \\ 0 & -4 \end{bmatrix} x = 0$. Thus, $-4x_2 = 0$, $x_2 = 0$ and x_1 is free. Let $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. For the second eigenvector consider $(A^*A - \lambda_2 I)x = 0$. Observe, $(A^*A - \lambda_2 I)x = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} x = 0$. Thus, $4x_1 = 0$, $x_1 = 0$ and x_2 is free. Let $x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. It follows that $V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Note that $A^*A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Suppose $x \neq \vec{0}$ and $(AA^* - \lambda I)x = 0$. It must be that $\det(AA^* - \lambda I) = \det \begin{bmatrix} 4 - \lambda & 0 & 0 \\ 0 & -\lambda & 0 \\ 0 & 0 & -\lambda \end{bmatrix} = 0$. Thus, $(4 - \lambda)(\lambda^2) = 0$ and $\lambda_1 = 4$, $\lambda_2 = 0$, $\lambda_3 = 0$.

For the first eigenvector consider $(AA^* - \lambda_1 I)x = 0$. Observe, $(AA^* - \lambda_1 I)x = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix}x = 0$. Thus, $-4x_2 = 0$, $-4x_3 = 0$ so $x_2 = x_3 = 0$ and x_1 is free. Let $x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. For the second and third eigenvectors $(AA^* - \lambda_2 I)x = (AA^* - \lambda_3 I)x = 0$. In each case $4x_1 = 0$ and x_1, x_2 are free. Let the respective eigenvectors for λ_2, λ_3 be $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

It follows that
$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.
Observe, $\Sigma = \begin{bmatrix} \sqrt{4} & 0 \\ 0 & \sqrt{0} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$.
In conclusion, $A = U\Sigma V^*$ as they are defined above and thus they compose the SVD of A.

Problem 2. Determine the SVD of $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$ Note, $A^*A = \begin{bmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{bmatrix}$. Suppose $x \neq \vec{0}$ and $(A^*A - \lambda I)x = 0$. It must be that $\det(A^*A - \lambda I) = \det \begin{bmatrix} 13 - \lambda & 12 & 2 \\ 12 & 13 - \lambda & -2 \\ 2 & -2 & 8 - \lambda \end{bmatrix} = 0$. Thus, $(25 - \lambda)(\lambda - 9)(-\lambda) = 0$ and $\lambda_1 = 25$, $\lambda_2 = 9$, and $\lambda_3 = 0$. Clearly, $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$. To construct V consider the eigenvectors of A^*A . For the first eigenvector consider $(A^*A - \Delta I)$

$$\lambda_1 I) x = 0. \text{ Observe, } (A^*A - \lambda_1 I) x = \begin{bmatrix} -12 & 12 & 2\\ 12 & -12 & -2\\ 2 & -2 & -17 \end{bmatrix} x = \begin{bmatrix} 1 & -1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix} x = 0. \text{ Thus, } x_1 = x_2 \text{ and } x_3 = 0. \text{ An eigenvector of unit length is } x = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}.$$

For the second eigenvector consider $(A^*A - \lambda_2 I)x = 0$. Observe, $(A^*A - \lambda_2 I)x = \begin{bmatrix} 4 & 12 & 2 \\ 12 & 4 & -2 \\ 2 & -2 & -1 \end{bmatrix} x =$

 $\begin{bmatrix} 1 & 0 & -1/4 \\ 0 & 1 & 1/4 \\ 0 & 0 & 0 \end{bmatrix} = 0. \text{ Thus, } x_1 = 4x_3, x_2 = -4x_3, \text{ and } x_3 \text{ is free. An eigenvector perpendicular}$ to the first is $x = \begin{bmatrix} \frac{-1}{3\sqrt{2}} \\ \frac{1}{3\sqrt{2}} \\ -\frac{-2\sqrt{2}}{3} \end{bmatrix}.$

SPRING 2015

 $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} = 0. \text{ Thus, } x_1 = -2x_3, x_2 = 2x_3, \text{ and } x_3 \text{ is free. A unit eigenvector perpendicular}$ to the first two is $x = \begin{bmatrix} \frac{-2}{2} \\ \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}.$ It follows that $V = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{3\sqrt{2}} & \frac{-2}{3} \\ \frac{1}{\sqrt{2}} & \frac{3\sqrt{2}}{3\sqrt{2}} & \frac{2}{3} \\ 0 & -\frac{2\sqrt{2}}{3} & \frac{1}{3} \end{bmatrix}.$ Observe $AV = \begin{bmatrix} \frac{5}{\sqrt{2}} & \frac{-3}{\sqrt{2}} \\ \frac{5}{\sqrt{2}} & \frac{\sqrt{2}}{\sqrt{2}} \end{bmatrix}.$ It follows that $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$ In conclusion, $A = U\Sigma V^*$ as they are defined above and thus they compose the SVD of A.