MATH 447/847
HOMEWORK 6 SOLUTIONS
SPRING 2015

Problem 1. Leti = +/—1. Show that, for any integers m and n,

2n  ifm=n,

27 inx ,—imx
d pu—
(@) fo e™e x {0 .

Proof. Suppose m = n. Observe,
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Suppose m # n. Observe,
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(b) [y cos(nx)cos(mx)dx = {0 ifm £,

Proof. Suppose m = n. Observe,

2n 2n 2T /1 1
/ cos(nx) cos(mx) dx = / cos? (nx) dx = / (5 ) Cos(2nx)> dx
0 0 0
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The second integral is zero, since it is cosine (at a higher integer-frequency) integrated over
its period. Next, suppose m # n. Using a standard trig identity for the product of cosines, we

observe

/027c cos(nx) cos(mx) dx = /0

27 q
3 [cos((n—m)x) + cos((n+m)x)]dx

= %/Omcos((n—m)x) a’x—i—%/ozncos((n+m)x) dx

=0+0=0.

The integrals are zero, since again we are integrating cosine (at a higher integer-frequency)

over its period.

(©) J§"sin(nx) cos(mx)dx =0

1] =0.
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Proof. Using a standard trig identity for the product of sine and cosine, we observe
2 27
/ sin(nx) cos(mx) dx = / Slsin((n-+m)x) + sin (n = m)x)] dx
0 0

1 /2= 1 /2=
= —/ sin((n—+m)x) dx+ —/ sin((n —m)x)dx
2 Jo 2Jo
=0+0=0.
The integrals are zero, since again we are integrating sine (at a higher integer-frequency) over

its period. Note that when n = m, then n —m = 0, so sin((n —m)x) = sin(0) = 0, so this case
also gives zero. 0

(d) [ sin(nx) sin(mx) dx = { g EZ ; : 70,

Proof. We could do these in a similar way to the others, but here is another way. Note that,
since i2 = —1,

e™e ™M — (cos(nx) + isin(nx)) (cos(mx) + isin(mx))
= cos(nx) cos(mx) — sin(nx) sin(mx) + i[sin(nx) cos(mx) + cos(nx) sin(mx)]
Integrating both sides and using the above results gives the desired identity. This is the time
saver mentioned below. U

Time saver: Do the first two (use a trig identity on the second one), then expand the exponents
in the first one with Euler’s formula, (¢’ = cos(8) +isin(8)), to get the rest.

Problem 2. Consider the “Continuous to Discrete” Fourier transform, given by the relations
(1) = Z ay cos(kx) + by sin(kx))

(a) Find the Fourier coefficients ay, ai, and by in the case where f(x) = x. (Hint: Use the relation-
ships in Problem 1 on (1) to isolate the coefficents. Then integrate by parts.) The coefficients
will be numbers that depend only on &.

Solution. The formulas used were derived in class. Observe,

1 27 : . 21 0 5
by = —/ xsin(kx)dx = {sm(kx) kxcos(kx)} _0—k2xr+0
0

1
T 2 Y

=0

1 1 lcos(kx)+kxsin(kx)]2n 14+0-1-0
0

2m
ay = %/0 xcos(kx)dx = - 2 g

l/znd 11(27:) —0=r
apo=-— [ xdx=—= =

* " 21 o 272

Thus, the Fourier series for f(x) =x on (0,27) is

-2 -2 -2 -2 -2
X=TA sin(x) + E3 sin(2x) + ES sin(3x) + e sin(4x) + = sin(5x) + -
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(b) Plot the first few terms of the series in (1) using the coefficients you found. (Hint: It is easy to
do this in Matlab using a loop over k to add all the terms together.)

Plots of f(x) for terms of the series evaluated

Note that, away from the end points, they are converging to the function f(x) = x, as expected.

Problem 3. Show that the quadrature

/Ow e f(x)dx m 2 +4\/§f(2 V242 _4\/§f(2 +V2)

has algebraic degree of accuracy 3.

Proof. Since the quadrature is linear in f (as most quadratures are), we do not need to take an
arbitrary polynomial ax® + bx? + cx +d. It is easier to take f(x) = 1, f(x) = x, f(x) = x*, and
f(x) = x>. Using calculus (namely, integration by parts), one can show:

/ e*X1dx:1:2+ﬂ1+2_‘/§1
0 4 4

/Oooe_xxdx: 1= 2+\/§(2—\/§)+2_\/§(2+\/§)

4 4
/Oooe_xxzdx =2= 2+4\/§(2— V2)2 4 2_4\/5(24—\/5)2
/Owe_xx3dx =6= 2+4\/§(2— V2)? + 2_4\/5(24—\/5)3
/()we_xx4dx: 24 #20 = 2+4\/§(2— V2)*+ 2_4ﬁ(2+\/§)4

So the quadrature is 3" order, but not 4M-order. This means it is exact for cubics, but not for
4™_degree polynomials. O
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Problem 4. Find the nodes and the coefficients of the Gauss quadrature with two nodes for eval-

uating the integral
1
/ WiCONN
—1v1—x2
Solution. We need to find wy, wy, x1, and x; such that the expression
wif(x1) +waf(x2)

is exactly equal to the integral when f(x) = 1, f(x) = x, f(x) = x%, and f(x) = x* (Gaussian
quadrature on n points is always exact to degree 2n — 1 and no higher. Since we have two nodes,
n=2,and 2n—1 =3, so we will geta 3" order method.)

A little calculus (trig-substitution) gives the following table.

fe) Y \/f%dx Resulting Equation
1 T T=wi+wy
X 0 0= wix; +woxp
x? z Z = wix] +wox3
X 0 0= wlx? + wzxg

In fact, for f(x) = x and f(x) = x>, the integrands are odd functions, so the integral is zero
because we are integrating over a symmetric interval.
Thus, T = wj +w; implies w; = T —wy. Further, 0 = wyx| +wyx; implies 0 = (7 —wy )x; +wox

_ _Txy
and wy = g Observe,
/4
2 2
52W1X1+W2x2
X1 X1
= (m— X+ %
X1 —X2 X1 —X2
N —1
X2 — —
2x1
Observe,
0= 3 3
= wixy +wax;
. X1 3 X1 1
B ﬂ:_x + 5 e x|+ 5 | 8x3
17 25, 17 2y 1
= + !
X1 = —
V2
_ 1 =2 _ = _=z _-1l_ =2 V2. _ =z _z
Thusxl—ﬁ,xz— =.wr=5andwy =5 orx; = = =g ;wi=5andwy = 5.

The resulting Gaussian quadrature is:

L f(x) n (—V2\ =« 2
— 7 _dx~ — - — -
vt 2f< 2 )20\ 2
It is exact for polynomials of degree 3 or less, but not for general polynomials of degree 4 or
higher.



