
MATH 447/847
HOMEWORK 6 SOLUTIONS

SPRING 2015

Problem 1. Let i =
√
−1. Show that, for any integers m and n,

(a)
∫ 2π

0 einxe−imx dx =

{
2π if m = n,
0 if m 6= n,

Proof. Suppose m = n. Observe,∫ 2π

0
einxe−imx dx =

∫ 2π

0
e(n−m)ix dx =

∫ 2π

0
e0 =

∫ 2π

0
1 = 2π .

Suppose m 6= n. Observe,∫ 2π

0
einxe−imx dx =

∫ 2π

0
e(n−m)ix dx =

1
(n−m)i

[(ei2π)(n−m)− e(n−m)i0] =
1

(n−m)i
[1−1] = 0.

�

(b)
∫ 2π

0 cos(nx)cos(mx)dx =

{
π if m = n 6= 0,
0 if m 6= n,

Proof. Suppose m = n. Observe,∫ 2π

0
cos(nx)cos(mx)dx =

∫ 2π

0
cos2(nx)dx =

∫ 2π

0

(
1
2
+

1
2

cos(2nx)
)

dx

=
∫ 2π

0

1
2

dx+
1
2���

���
���:0∫ 2π

0
cos(2nx)dx

=
1
2

2π = π

The second integral is zero, since it is cosine (at a higher integer-frequency) integrated over
its period. Next, suppose m 6= n. Using a standard trig identity for the product of cosines, we
observe∫ 2π

0
cos(nx)cos(mx)dx =

∫ 2π

0

1
2
[cos((n−m)x)+ cos((n+m)x)]dx

=
1
2

∫ 2π

0
cos((n−m)x)dx+

1
2

∫ 2π

0
cos((n+m)x)dx

= 0+ 0 = 0.

The integrals are zero, since again we are integrating cosine (at a higher integer-frequency)
over its period. �

(c)
∫ 2π

0 sin(nx)cos(mx)dx = 0

1
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Proof. Using a standard trig identity for the product of sine and cosine, we observe∫ 2π

0
sin(nx)cos(mx)dx =

∫ 2π

0

1
2
[sin((n+m)x)+ sin((n−m)x)]dx

=
1
2

∫ 2π

0
sin((n+m)x)dx+

1
2

∫ 2π

0
sin((n−m)x)dx

= 0+ 0 = 0.

The integrals are zero, since again we are integrating sine (at a higher integer-frequency) over
its period. Note that when n = m, then n−m = 0, so sin((n−m)x) = sin(0) = 0, so this case
also gives zero. �

(d)
∫ 2π

0 sin(nx) sin(mx)dx =

{
π if m = n 6= 0,
0 if m 6= n

Proof. We could do these in a similar way to the others, but here is another way. Note that,
since i2 = −1,

einxe−imx = (cos(nx)+ isin(nx))(cos(mx)+ isin(mx))

= cos(nx)cos(mx)− sin(nx) sin(mx)+ i[sin(nx)cos(mx)+ cos(nx) sin(mx)]

Integrating both sides and using the above results gives the desired identity. This is the time
saver mentioned below. �

Time saver: Do the first two (use a trig identity on the second one), then expand the exponents
in the first one with Euler’s formula, (eiθ = cos(θ )+ isin(θ )), to get the rest.

Problem 2. Consider the “Continuous to Discrete” Fourier transform, given by the relations

f (x) = a0 +
∞

∑
k=1

(ak cos(kx)+ bk sin(kx))(1)

(a) Find the Fourier coefficients a0, ak, and bk in the case where f (x) = x. (Hint: Use the relation-
ships in Problem 1 on (1) to isolate the coefficents. Then integrate by parts.) The coefficients
will be numbers that depend only on k.

Solution. The formulas used were derived in class. Observe,

bk =
1
π

∫ 2π

0
xsin(kx)dx =

1
π

[
sin(kx)− kxcos(kx)

k2

]2π

0
=

0− k2π + 0
πk2 =

−2
k

ak =
1
π

∫ 2π

0
xcos(kx)dx =

1
π

[
cos(kx)+ kxsin(kx)

k2

]2π

0
=

1+ 0−1−0
πk2 = 0

a0 =
1

2π

∫ 2π

0
xdx =

1
2π

1
2
(2π)2−0 = π

Thus, the Fourier series for f (x) = x on (0,2π) is

x = π +
−2
1

sin(x)+
−2
2

sin(2x)+
−2
3

sin(3x)+
−2
4

sin(4x)+
−2
5

sin(5x)+ · · ·
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(b) Plot the first few terms of the series in (1) using the coefficients you found. (Hint: It is easy to
do this in Matlab using a loop over k to add all the terms together.)

Note that, away from the end points, they are converging to the function f (x) = x, as expected.

Problem 3. Show that the quadrature∫
∞

0
e−x f (x)dx≈ 2+

√
2

4
f (2−

√
2)+

2−
√

2
4

f (2+
√

2)

has algebraic degree of accuracy 3.

Proof. Since the quadrature is linear in f (as most quadratures are), we do not need to take an
arbitrary polynomial ax3 + bx2 + cx+ d. It is easier to take f (x) = 1, f (x) = x, f (x) = x2, and
f (x) = x3. Using calculus (namely, integration by parts), one can show:∫

∞

0
e−x1dx = 1 =

2+
√

2
4

1+
2−
√

2
4

1∫
∞

0
e−xxdx = 1 =

2+
√

2
4

(2−
√

2)+
2−
√

2
4

(2+
√

2)∫
∞

0
e−xx2dx = 2 =

2+
√

2
4

(2−
√

2)2 +
2−
√

2
4

(2+
√

2)2

∫
∞

0
e−xx3dx = 6 =

2+
√

2
4

(2−
√

2)3 +
2−
√

2
4

(2+
√

2)3

∫
∞

0
e−xx4dx = 24 6= 20 =

2+
√

2
4

(2−
√

2)4 +
2−
√

2
4

(2+
√

2)4

So the quadrature is 3rd-order, but not 4th-order. This means it is exact for cubics, but not for
4th-degree polynomials. �
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Problem 4. Find the nodes and the coefficients of the Gauss quadrature with two nodes for eval-
uating the integral ∫ 1

−1

f (x)√
1− x2

dx.

Solution. We need to find w1, w2, x1, and x2 such that the expression

w1 f (x1)+w2 f (x2)

is exactly equal to the integral when f (x) = 1, f (x) = x, f (x) = x2, and f (x) = x3 (Gaussian
quadrature on n points is always exact to degree 2n−1 and no higher. Since we have two nodes,
n = 2, and 2n−1 = 3, so we will get a 3rd-order method.)

A little calculus (trig-substitution) gives the following table.

f (x)
∫ 1
−1

f (x)√
1−x2 dx Resulting Equation

1 π π = w1 +w2
x 0 0 = w1x1 +w2x2
x2 π

2
π

2 = w1x2
1 +w2x2

2
x3 0 0 = w1x3

1 +w2x3
2

In fact, for f (x) = x and f (x) = x3, the integrands are odd functions, so the integral is zero
because we are integrating over a symmetric interval.

Thus, π =w1+w2 implies w1 = π−w2. Further, 0=w1x1+w2x2 implies 0= (π−w2)x1+w2x
and w2 =

πx1
x1−x2

. Observe,
π

2
= w1x2

1 +w2x2
2

= (π− πx1

x1− x2
)x2

1 +
πx1

x1− x2
x2

2

⇒ x2 =
−1
2x1

Observe,

0 = w1x3
1 +w2x3

2

=

(
π− πx1

x1 +
1

2x1

)
x3

1−

(
πx1

x1 +
1

2x1

)
1

8x3
1

⇒ x1 = ±
1√
2

Thus x1 =
1√
2
,x2 =

−
√

2
2 ,w1 =

π

2 and w2 =
π

2 or x1 =
−1√

2
= −

√
2

2 ,x2 =
√

2
2 ,w1 =

π

2 and w2 =
π

2 .
The resulting Gaussian quadrature is:∫ 1

−1

f (x)√
1− x2

dx≈ π

2
f

(
−
√

2
2

)
+

π

2
f

(√
2

2

)
It is exact for polynomials of degree 3 or less, but not for general polynomials of degree 4 or
higher.


