Popular Explicit One-Step Methods MATH 447/847 - Numerical Analysis Dr. Adam Larios

Goal: We want to approximate the solution to the equation:

$$
\begin{cases}\ny' = f(t, y) \\
y(0) = y_0\n\end{cases}
$$

We look at two methods for doing this. The first has several names, including "Modified Euler," "Runge-Kutta-2 (RK-2)," "Heun's Method" and "Ralston's Method." To understand where it comes from, consider the Euler methods:

$$
y_{n+1} = y_n + h \cdot f(t_n, y_n)
$$
 (Forward Euler)

$$
y_{n+1} = y_n + h \cdot f(t_{n+1}, y_{n+1})
$$
 (Backward Euler)

Backward Euler has better stability properties, but y_{n+1} is only *implicitly* defined, which means we have to solve an algebraic problem every time step to find y_{n+1} (unless f is very nice, e.g., it is linear, so we can solve it by hand). We would like to use Backward Euler, but the y_{n+1} on the right-hand side is not known. Instead, we can approximate it using forward Euler. We then average the results of the two methods. It looks something like this:

$$
\begin{cases}\ny_{n+1}^* = y_n + h \cdot f(t_n, y_n) & \text{(prediction with forward Euler)} \\
y_{n+1}^{**} = y_n + h \cdot f(t_{n+1}, y_{n+1}^*) & \text{(use prediction in backward Euler)} \\
y_{n+1} = \frac{1}{2}(y_{n+1}^* + y_{n+1}^{**}) & \text{(average the predictions)}\n\end{cases}
$$

The final y_{n+1} is what we use as our approximated value. This looks a little messy with all the ∗'s and so on thought. We can make it a little cleaner be first noting that

$$
\frac{1}{2}(y_{n+1}^* + y_{n+1}^{**}) = \frac{1}{2}[(y_n + h \cdot f(t_n, y_n)) + (y_n + h \cdot f(t_{n+1}, y_{n+1}^{*}))]
$$

= $y_n + \frac{h}{2}(f(t_n, y_n) + f(t_n + h, y_n + h \cdot f(t_n, y_n))).$

since $t_{n+1} = t_n + h$. Next, note that we are being inefficient, since we compute $f(t_n, y_n)$ multiple times. Therefore, we can just save it as a value, say, k_1 , and use it when we need it. We can note write the method like this:

(RK-2)
$$
\begin{cases} k_1 = f(t_n, y_n) \\ k_2 = f(t_n + h, y_n + h \cdot k_1) \\ y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2) \end{cases}
$$

This is the Modified Euler Method (or Heun, or RK-2, or Ralphson, etc.). It is an explicit method of order 2, meaning its error behaves like $M \cdot h^2$ when h is small, where M is some fixed number depending on the ODE problem, but not depending on h. For short-hand, we say it is an $\mathcal{O}(h^2)$ method, using the "Big-O" notation.

One can use a similar approach to get higher-order methods. Also, instead of just approximating at t and $t + h$, one can introduce approximations at other points, such as the midpoint $t + \frac{h}{2}$ $\frac{h}{2}$. By far the most popular higher-order method is the Runge-Kutta-4 method, or "RK-4". It is a 4thorder method which is so popular, it is often called just, "The Runge-Kutta Method", while all other similar methods are called RK-2, RK-3, RK-5, and so on. It is very messy to derive, but the ideas are similar to those used for RK-2, so we will just give the method here:

(RK-4)

$$
\begin{cases}\nk_1 = f(t_n, y_n) \\
k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2} \cdot k_1) \\
k_3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2} \cdot k_2) \\
k_4 = f(t_n + h, y_n + h \cdot k_3) \\
y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)\n\end{cases}
$$

Note that this is sometimes written in the following equivalent form:

(RK-4)

$$
\begin{cases}\nk_1 = h \cdot f(t_n, y_n) \\
k_2 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{1}{2}k_1) \\
k_3 = h \cdot f(t_n + \frac{h}{2}, y_n + \frac{1}{2}k_2) \\
k_4 = h \cdot f(t_n + h, y_n + k_3) \\
y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)\n\end{cases}
$$

A common mistake is to use the k_i 's from one form, but to use the averaging from the other form. This is a good mistake to avoid!

In general, one can have Runge-Kutta methods of any order. An order p method can be give as

$$
(RK-p)
$$
\n
$$
\begin{cases}\nk_1 = f(t_n, y_n) \\
k_2 = f(t_n + \alpha_2 h, y_n + \beta_{21} h \cdot k_1) \\
k_3 = f(t_n + \alpha_3 h, y_n + \beta_{31} h \cdot k_1 + \beta_{32} h \cdot k_2) \\
\vdots \\
k_p = f(t_n + \alpha_p h, y_n + \beta_{p1} h \cdot k_1 + \beta_{p2} h \cdot k_2 + \dots + \beta_{p,p-1} h \cdot k_{p-1}) \\
y_{n+1} = y_n + h(c_1 k_1 + c_2 k_2 + \dots + c_p k_p)\n\end{cases}
$$

For any given method the constants α_i , β_i , and c_i are usually looked up in a table (they are determined by working out the local truncation error with Taylor series, and choosing the constants to make all the terms cancel up to a desired order). They are typically given in the form of a "Butchertableau", named after the New Zealand mathematician John Butcher, who works at the University of Auckland. For the method to be *consistent* (i.e., for the local truncation error $\tau \to 0$ as $h \to 0$), it is sufficient for $\sum_{j=1}^{p} \beta_{i,j} =$ α_i for each $i = 2, 3, \ldots, p$.

For example, (RK-p) is given by the Butcher tableau:

0 α² β²¹ α³ β³¹ β³² α^p βp¹ βp² · · · βp,p−¹ c¹ c² · · · cp−¹ c^p

0

Forward Euler (RK-1) is given by the Butcher tableau:

1 Modified Euler (RK-2) is given by the Butcher tableau:

$$
\begin{array}{c|c}\n0 & \frac{1}{2} & \frac{1}{2} \\
\hline\n0 & 1 & \n\end{array}
$$

And RK-4 is given by the Butcher tableau:

$$
\begin{array}{c|cc}\n0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\hline\n1 & 0 & 0 & 1 \\
\hline\n\frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6}\n\end{array}
$$

Matlab's ODE solver ode45.m is based on Erwin Fehlberg's method, which is two methods combined into one, allowing for an adaptive step-size. They have the same coefficients α_i , β_i , and only differ in the c_i coefficients, so we can write them in the same table as:

The first bottom row is used to compute a 4th-order accurate solution. The second bottom row is used to compute a 5th-order accurate solution. If the two methods are significantly different, the step size h is decreased, and the calculation is repeated for that step.