Math 447
Due: Friday, 24 April 2015

Programming Assignment: Initial-Value Problem for Ordinary
Differential Equations

Consider the initial-value problem

y'(t) = f(t,y), y(to) = yo, from ¢t =ty to t = ty. (1)

1 Develop and Test your code
1.1 Euler’s Method
Consider the IVP
y = —txy?, y=2, fromt=0tot=2.

Program Euler’s method to solve this initial value problem (IVP) in a
file euler.m, which is a function that takes arguments h (the step-size),
t0 (the initial time), and tf (the final time), and outputs a vector t
containing all the time values, and a vector y containing all the function
values. Your code should work for arbitrary choice of the step-size h,
so long as h is small enough (large h should give bad oscillations, i.e.,
instability).
The (forward) Euler method is

Y1 = Y + D * f(tnﬂa yn+1)

Assume that the interval [0, 2] is divided into N — 1 equal sub-intervals
(so there are N points) and denote the length of the sub-intervals by h.
Thenh:%, and t, =0+ hk for k=0,1,..., N — 1.

Verify that the code works correctly by comparing the results with the

exact solution,
2
240

in a testing file testEuler.m, using the L*-norm of the error (i.e., the

Yexact (t)

maximum of the absolute value of the difference).

error Ogrz%%\)fil ‘yegcact( z) yl‘

1



where 7 is the approximate solution computed by Euler’s method. (Note
that MATLAB starts indexing at 1 instead of 0, so your index may be
a little different. Also, MATLAB’s max and abs functions may be useful
to you here.)

1.2 Improved Euler’s Method and RK4

(Note: We will discuss these methods on Monday, or you can find them,
e.g., in an old ODE book or on Wikipedia.)

Now, implement the improved Euler’s method, also called the “Huen
Method” and “Runge-Kutta-2”. Use your code for the improved Euler’s
method to solve the ODE above. Name it rk2.m.

Do the same with Runge-Kutta-4. Name it rk4.m.

2 Convergence Rates for One-Step Methods

Now that we have developed working code, we will compare the order of
the error in each of the methods as described below.

Use your programs to compute the approximate solution of the IVP
(1) for N = 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560 using forward
Euler, Modified Euler, and RK-4. Plot h versus h* together with A versus
the error in loglog-plot in MATLAB. Use p = 1 for Euler and p = 2 for
Modified Euler, and p = 4 for RK-4. Include there three plots in your
report (just print them), and briefly discuss your findings.

MATLAB tips: Type the MATLAB command help plot for some
useful plotting commands. The MATLAB function loglog may also be
helpful. Here is a way to plot two functions on the same plot:

x = linspace(0,1,100);

plot(x,x.A2);

hold on;

plot(x,x.A3);

3 Backward Euler and Stability

Consider the IVP
vy =10—1vy, wyo=2, fromt =0 tot = 10.

2



Implement the backward Fuler method to solve this. This will require
some minor algebra. Name it backwardEuler.m. The backward Euler
method is:

Yk+1 = Yk + h* f(tnst, Yntr)

Backward Euler has the same order of accuracy as forward Euler (check
it with your code if you want), so we won’t look at that here. Instead, we
will look at the stability. Taking steps is expensive, so we usually want
to take as few steps as we can (i.e., we want to take a small number of
large steps). Compare your forwardEuler.m with your backwardEuler .m
on this problem. How small can you make N (i.e., how large can you
make h) for these two methods, while still trusting the accuracy? (Note:
h = 10/(N — 1).) What happens for the two approximations when N
gets really small? Print out a graph of an interesting case.

4 Bonus (30 pts possible)

Read about Newton’s method, or the binary search algorithm for finding
the zeros of functions. Implement backward Euler, approximately solving
for y,.1 using Newton’s method (or binary search) at each step (you can
have the derivative function in Newton’s method input separately, taking
the derivative by hand on paper). Keep your Newton solver (or binary
solver) in a separate file named newton.m (or binarySearch.m), and call
it in your backward Euler loop. Use your code to solve

Yy =0.5% (1 —y/100) x y + 10 x sin(t), yo = 10, from ¢ = 0 to ¢t = 40.

with backward Euler. This is the Logistic equation from population
dynamics with periodic forcing.



