
Math 433/833 Assignment # 2 Assigned: 2016.01.28
Due: 2016.02.09

0. Read sections 2.1, 2.2, 2.3, 2.4, 2.5 in the book.

1. Problems:

Page 47, #2.1 Solution. All the given points are feasible (plug them in, and see that
they satisfy the inequalities). xb, xc, and xe are on the boundary of the
first constraint (the satisfy not just the inequality, but are actually equal).
xe is on the boundary of the second constraint. xb, xc, and xd are on the
boundary of the third constraint.

Page 47, #2.2 f(x) = (x+ 1)x(x− 2)(x− 5) = x4 − 6x3 + 3x2 + 10x.

Solution. Stationary points at (roughly) x = −1, 1, 4. There are local
minima at about x = −1, 4. There is a local maximum at about x = 1.
There is no global maximum.

x

y

−2 −1 0 1 2 3 4 5

Page 47, #2.3 Solution. The feasible set is the shaded region below. The set of local
minimizers is draw in black (the vertical line segment, and the points at
(−2, 0)). The global minmimizer is the point (−2, 0).
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Page 52, #3.3 Prove that the set S = {x : Ax ≤ b} is convex.

Solution. To show convexity, we need to take two arbitrary points in S,
and show that any point on the line joining them is also in S.
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Let x,y ∈ S be arbitrary, and let 0 ≤ α ≤ 1 be arbitrary. We will show
that z, defined by z = αx + (1−α)y ∈ S. We need to show that Az ≤ b.

Az = A(αx + (1− α)y)

= αAx + (1− α)Ay (by properties of matrices)

≤ αb + (1− α)b (since x,y ∈ S)

= b

Thus Az ≤ b, so z ∈ S. Since x,y, α were arbitrary, S is convex.

Page 52, #3.12 Let g1, . . . , gm be concave functions on Rn. Prove that the set S =
{x : gi(x) ≥ 0, i = 1, . . . ,m} is convex.

Solution. Let x,y ∈ S be arbitrary, and let 0 ≤ α ≤ 1 be arbitrary.
Since x,y ∈ S, we know that

gi(x) ≥ 0 for each i = 1, . . . ,m, and

gi(y) ≥ 0 for each i = 1, . . . ,m.

Since each gi is concave, we also have, for each i = 1, . . . ,m,

gi(αx + (1− α)y) ≥ αgi(x) + (1− α)gi(y)

≥ α0 + (1− α)0 (since x,y ∈ S)

= 0.

Thus, gi(αx + (1− α)y) ≥ 0, so αx + (1− α)y ∈ S. Thus, S is convex.

Page 52, #3.13 Let f be a convex function on the convex set S. Prove that the level set
T = {x : f(x) ≤ k} is convex for all real numbers k.

Solution. Let x,y ∈ T be arbitrary, and let 0 ≤ α ≤ 1 be arbitrary.
Since x,y ∈ S, we know that

f(x) ≤ k, and

f(y) ≤ k.

Since f is convex, we also have

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)

≤ αk + (1− α)k (since x,y ∈ T )

= k.

Thus, f(αx + (1− α)y) ≤ k, so αx + (1− α)y ∈ T . Thus, T is convex.
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Page 62, #5.1(v) [This problem was retracted, and will not be graded.]

Page 62, #5.2 Consider the sequence defined by x0 = a > 0, and

xk+1 = 1
2

(
xk +

a

xk

)
. (1)

Prove that this sequence converges to x∗ =
√
a.

Fun fact: This is exactly Newton’s method used for computing
√
a, that

is, finding a positive zero of f(x) = x2 − a, since for Newton’s method,

xk+1 = xk −
f(xk)

f ′(xk)

= xk −
x2k − a

2xk

= xk −
x2k
2xk

+
a

2xk

= 1
2

(
xk +

a

xk

)
.

This method of finding square roots is also called the Babylonian method,
as well as “Hero’s method,” after Hero of Alexandria.

Solution. (Note: the case a = 2 was already shown in class.) First, note
that since x0 = a > 0, we must always have xk+1 > 0, since xk+1 =
1
2

(
xk + a

xk

)
> 0. (Note: This does not imply that the limit is positive.)

Next, assume that the sequence converges (later, we will show conver-
gence). Then xk → x∗. We will show that x∗ =

√
a. If it con-

verges (to something other than zero), then we also have xk+1 → x∗ and
a/xk+1 → a/x∗. Thus, taking the limit of the defining equation,

x∗ = 1
2

(
x∗ +

a

x∗

)
After a little algebra, we find x2∗ = a, so x∗ =

√
a.
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Next, denote ek = xk − x∗ = xk − a. Then, using equation (1), we find

ek+1 = xk+1 − x∗

= 1
2

(
xk +

a

xk

)
−
√
a

= 1
2xk

(
x2k + a− 2

√
axk

)
= 1

2xk

(
xk −

√
a
)2

= 1
2xk
e2k

Thus, ek+1/e
2
k = 1

2xk
, so

lim
k→∞

ek+1

e2k
= lim

k→∞
1

2xk
= 1

2
√
a
.

This means that the convergence is quadratic with constant C = 1
2
√
a
.

(Note: This means that finding square roots of larger numbers, the method
will converge faster!)

Proof of convergence. (Not required for full credit.)

As already noted above, xk > 0 for all k. Next, notice that, from the
above calculation for the error, that

xk+1 −
√
a = ek+1 = 1

2xk
e2k ≥ 0.

Thus, xk+1 ≥
√
a for all k ≥ 1. This means that

x2k − a ≥ 0 for all k ≥ 2. (2)

Next, notice that, for all k ≥ 2,

xk − xk+1 = xk − 1
2

(
xk +

a

xk

)
=
xk
2
− a

2xk
=
x2k − a

2xk
≥ 0

thanks to (2), and the (already established) fact that xk > 0. This means
that xk ≥ xk+1. This means that

x2 ≥ x3 ≥ x4 ≥ · · · ≥
√

2.

Thus, for k ≥ 2, xk is a decreasing sequence which is bounded below by√
2, so it converges to some point x∗, and also x∗ ≥

√
2 > 0.
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2. Write a Matlab function to compute the limit in Section 5.2 using the sequence.
Make the function input the number, a, and the number of iterations. Make
it output the final iteration, and the absolute value of the error between the
final iteration and the exact solution, sqrt(a). Make the code give an error if
the input a is negative. The whole code will be fairly short, maybe 10 lines or
fewer, depending on how you code it. If you get stuck, review Part 10:
Functions in the Matlab Introduction file.

Solution. Here is one possible example code:

1 function x = sqrtNewton(a,numIter)

2 % A function to compute the square root of 'a'
3 % using Newton 's method (i.e., the Babylonian method ).

4
5 if ( a < 0 )

6 error('Input must be non -negative ');
7 elseif (a == 0)

8 x = 0;

9 return;

10 end

11
12 x = a;

13 for k = 1: numIter

14 x = 0.5*(x + a/x);

15 end

16
17 display(sprintf('error = %g',abs(x-sqrt(a))));


