
Math 433/833 Assignment # 3 Assigned: 2016.02.09
Due: 2016.02.16

0. Read sections 2.6, 2.7, 2.8, 11.1, and 11.2 in the book.

1. Page 65, #6.1. Find the first four terms in the Taylor series expansion of
f(x) = log(1 + x) = loge(1 + x) = ln(1 + x). Evaluation for p = 0.1 and
p = 0.01, and compare, deriving a bound for the accuracy.

Solution. Note that dn

dxn log(1 + x) = (−1)n−1(n−1)!
(1+x)n

for n = 1, 2, 3, . . .. For the
Taylor series, we have:

f(x0 + p) = f(x0) + pf ′(x0) + p2

2
f ′′(x0) + p3

3!
f ′′′(x0) + p4

4!
f (4)(ξ)

for some ξ satisfying x0 < ξ < x0 + p. Thus, for x0 = 0, we have

log(1 + p) = log(1 + 0) + p
1

1 + 0
+ p2

2

−1

(1 + 0)2
+ p3

3!

2

(1 + 0)3
+ p4

4!

−3

(1 + ξ)4

= p− p2

2
+ p3

3
− p4

8

1

(1 + ξ)4

These are four terms, with the first term being zero. I will leave it to you to
check the decimals. To find a bound on the accuracy, we see from the above
equation that, since ξ > x0 = 0,∣∣∣log(1 + p)−

(
p− p2

2
+ p3

3

)∣∣∣ =

∣∣∣∣p48 1

(1 + ξ)4

∣∣∣∣ ≤ ∣∣∣∣p48 1

(1 + 0)4

∣∣∣∣ =
p4

8

For example, if p = 0.1, the error in approximating by the first four terms is
at most 0.14/8 = 1.25 · 10−5.

2. Page 66, # 6.4. Find the first three terms of the Taylor series for f(x1, x2) =
3x41 − 2x31x2 − 4x21x

2
2 + 5x1x

3
2 + 2x42 at x0 = ( 1

−1 ).

Solution. Recall the Taylor series (with ∇2 denoting the Hessian):

f(x0 + p) ≈ f(x0) + pT∇f(x0) + pT∇2f(x0)p

We compute f(x0) = −2, and

∇f(x) =

[
12x31 − 6x21x2 − 8x1x

2
2 + 5x32

−2x31 − 8x21x2 + 15x1x
2
2 + 8x32

]
,

and

∇2f(x) =

[
36x21 − 12x1x2 − 8x22 −6x21 − 16x1x2 + 15x22
−6x21 − 16x1x2 + 15x22 −8x21 + 30x1x2 + 24x22

]
.
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Thus,

∇f(x0) =

[
5
13

]
and

∇2f(x0) =

[
40 25
25 −14

]
We find:

f(x0 + p) ≈ f(x0) + pT∇f(x0) + 1
2
pT∇2f(x0)p

= −2 + pT

[
5
13

]
+ 1

2
pT

[
40 25
25 −14

]
p

= −2 + 5p1 + 13p2 + 20p21 + 25p1p2 − 7p22

3. Page 66, # 6.6 Prove that if pT∇f(xk) < 0, then f(xk + εp) < f(xk) for ε > 0
sufficiently small.

Solution. Recall that, by first-order Taylor approximation:

f(xk + εp) = f(xk) + εpT∇f(ξ)

for some ξ lying on the line between xk and xk + εp. (This is also known as
the Mean-Value Theorem.) If f is smooth (as we usually assume), then ∇f
is continuous, and therefore, so is pT∇f(x). For a function is continuous and
negative at a point xk, then it is negative for all x sufficiently close to xk (to
see this, draw a picture). Moreover, as ε gets small, xk + εp get closer to xk, so
ξ approaches xk (since again, ξ lies on the line between xk and xk + εp). Thus,
for sufficiently small ε > 0, pT∇f(ξ) < 0, since pT∇f(xk) < 0. Therefore,

f(xk + εp) = f(xk) + εpT∇f(ξ) < f(xk) + ε0 = f(xk).

4. Page 74, # 7.1. For this problem, write a code to use Newton’s method. You
can write a function∗ to do this. Here is an example of how a function might
start:

1 function x = Newton(f,df,x0,tolerence ,maxIter)

2 % A program to solve f(x) = 0 using Newton 's method.

∗See the Matlab Intro, Section 10, if you need a refresher on Matlab functions.
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where maxIter is the maximum number of iterations you will allow, and
tolerence is the maximum error between steps you will allow. Once you
write the code, you can call it from the command line, as in the following ex-
ample, which uses Newton’s method with initial guess x0 = 2 to compute

√
3

out to 15 decimal places. (Note that the derivative d
dx

(x2 − 3) = 2x has been
computed by hand.)

>> format long g

>> x = Newton(@(x) x^2 - 3, @(x) 2*x, 2, 1e-15 ,1000)

(The first line makes Matlab display more decimal places; you only need to
enter it once per session.) Include your answers for page 74, # 7.1, and also
print your Newton code and staple it to your homework.

Solution. One possible solution is included at the end of this document.

5. Page 362, # 2.3. First, we compute when the gradient is equal to zero:

∇f(x) =

(
16x1 + 3x2 − 25
3x1 + 14x2 + 31

)
=

(
0
0

)
Solving this system, we find the solution to be x∗ = (443/215,−571/215).
Thus, there is a single critical point. To check that x∗ is a minimizer, we
compute the Hessian at x∗:

Hf (x∗) = ∇2f(x∗) =

(
16 3
3 14

)
Note that since the determinate and upper left corner are both positive, by
Sylvester’s Criterion, Hf (x∗) is positive-definite. By a theorem we learned
in class, any local minimizer of a convex function is a global minimizer, and
moreover, it is unique. (Note: there are convex functions without any local or
global minimizers; consider f(x) = ex.)
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One solution to problem #4:

function x = Newton(f,df,x0,tolerence ,maxIter)

% A program to solve f(x) = 0 using Newton 's method:

% x_0 = initial guess;

% x_{n+1} = x_n - f(x_n)/f'(x_n);
% Until either |x_{n+1} - x_n| < tolerence

% and |f(x_n)| < tolerence

% or maxIter is reached.

% We calculate f' by hand and input it as df.

%

% Example run (to find sqrt (3)):

% x = Newton(@(x) x^2 -3, @(x)2*x, 3.0, 10^( -15) , 1000)

%

% Example of run that doesn 't converge:

% x = Newton(@(x) sin(x), @(x) cos(x), pi/2, 10^(-15), 1000)

% Initialize

x = x0;

for count = 1: maxIter

x_old = x; % Store the old value to check for error later.

% Newton iteration:

x = x - f(x)/df(x);

if ((abs(x-x_old) < tolerence) && (abs(f(x)) < tolerence ))

break;

end

end

if (count < maxIter)

display(sprintf('Exited after %d iterations.',count ));
else

warning('Maximum iterations reached. May not be converged.');
end


