
Math 433/833 Assignment # 4 Assigned: 2016.02.16
Due: 2016.02.23

0. Read sections 11.3, 11.4 A.6, and A.7 in the book.

1. Page 363, #2.9. Let f(x) = 2x2
1 + x2

2 − 2x1x2 + 2x3
1 + x4

1. Determine the
minimizers/maximizers of f and indicate what kind of minima or maxima
(local, global, etc.) they are.

Solution. We need to find where the gradient is zero. At those points, if
the Hessian is positive definite, the point is a minimum, and if the Hessian is
negative-definite, the point is a maximum. We compute

∇f(x) =

[
4x1 − 2x2 + 6x2

1 + 4x3
1

2x2 − 2x1

]
and

H(x) = ∇2f(x) =

[
4 + 12x1 + 12x2

1 −2
−2 2

]
Setting ∇f(x) = 0, we see that

4x1 − 2x2 + 6x2
1 + 4x3

1 = 0

2x2 − 2x1 = 0

so that, from the second equation, x1 = x2. Substituting this back into the
first equation yields

0 = 4x1 − 2x1 + 6x2
1 + 4x3

1 = 2x1 + 6x2
1 + 4x3

1 = 2x1(1 + 3x1 + 2x2
1)

= 2x1(2x1 + 1)(x1 + 1)

Thus, x1 = 0, −1
2
, or −1. Since x2 = x1, the critical points are (0, 0), (−1

2
,−1

2
),

and (−1,−1). At these points, the Hessian is:

H((0, 0)) =

[
4 −2
−2 2

]
H((−1

2
,−1

2
)) =

[
1 −2
−2 2

]
H((−1,−1)) =

[
4 −2
−2 2

]
Coincidentally, H((0, 0)) = H((−1,−1)), so our work is reduced. To check it
is positive definite, we can use Sylvester’s criterion to notice that h1,1(0, 0) =
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4 > 0 and det(H((0, 0))) = (4)(2) − (−2)(−2) = 4 > 0, so the matrix is
positive definite, and both (0, 0) and (−1,−1) are local minima. Furthermore,
the function tends ∞ as ‖x‖ → ∞, so at least one local minimum must be
a global mimimum. Since f((0, 0)) = f((−1,−1)) = 0, they are both local
minima. Next, notice that h1,1(−1

2
,−1

2
) = 1 > 0, but det(H((−1

2
,−1

2
))) =

(1)(2)− (−2)(−2) = −2 < 0, so H((−1
2
,−1

2
)) is not positive definite. In fact,

it is indefinite, and one can see in the plot below that f has a saddle-point at
(−1

2
,−1

2
).

Figure 1: Plot of the function f(x) = 2x2
1 + x2

2 − 2x1x2 + 2x3
1 + x4

1

By the way, here is how I plotted that in Matlab:

1 h = figure;

2 X = linspace ( -1.5 ,0.5 ,200);

3 Y = linspace ( -1.5 ,0.5 ,200);

4 [x y] = meshgrid(X,Y);

5 surf(x,y,2*x.^2 + y.^2-2*x.*y+2*x.^3+x.^4);

6 xlabel('x');
7 ylabel('y');
8 axis ([-1.5 0.5 -1.5 0.5 0 0.1]);

9 shading interp;

10 lighting phong;

11 caxis ([0 ,0.1]);

12 print(h,'-djpeg ','HW4prob1.jpg'); % Save plot to a file.
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2. Page 369, #3.2. Use the program you wrote in Assignment #3 for this one.
Write a very brief description (no more than a short paragraph) of your meth-
ods, and report your results.

Use Newton’s method to solve:

minimizef(x) = 5x5 + 2x3 − 4x2 − 3x + 2

Look for the solution in the interval [−2, 2]. Make sure you have found a
minimum and not a maximum.

Solution. Newton’s method for minimization (via solving f ′(x) = 0) takes the
form:

xk+1 = xk −
f ′(xk)

f ′′(xk)
= xk −

25x4 + 6x2 − 8x− 3

100x3 + 12x− 8

It may help to see the plots below. Notice the very subtle oscillation near the
origin.

x

f(x)

−2 −1 0 1 2
x

f ′(x)

−2 −1 0 1 2
x

f ′′(x)

−2 −1 0 1 2

Here’s a way to do it by brute force (which is totally overkill): check a few
thousand initial guesses on the interval using a loop. (See previous homework’s
answer key for a coded Newton’s method.)

1 df = @(x) 25*x^4+6*x^2-8*x-3;

2 ddf = @(x) 100*x^3+12*x-8, x0;

3
4 i=1;

5 x = zeros (1 ,1000);

6 for x0 = linspace ( -2,2 ,1000);

7 x(i) = Newton(df , ddf , x0, 10^(-15), 1000);

8 i = i+1;

9 end;

10 display(unique(x)');

I found x = −0.289897948556636 and x = 0.689897948556636 from this search.
However,
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>> ddf ( -0.289897948556636)

ans =

-13.9151015307185

>> ddf (0.689897948556636)

ans =

33.1151015307186

so by the second derivative test, only x = 0.689897948556636 is a local mini-
mum.

3. Page 370, #3.6 (You may want to read Appendix B.5 starting on page 696.)
Consider the problem

minimize f(x) = 1
2
xTQx− cTx

Where Q is a (symmetric) positive definite matrix. Prove that Newton’s
method will converge in one step, regardless of the starting point.

Solution. As we saw in class,

∇f(x) = Qx− c

∇2f(x) = Q

Thus, the critical points are solutions to 0 = ∇f(x) = Qx−c, that is, solutions
to Qx = c. Recall that very SPD matrix is intervible. Thus, the solution to
Qx = c is unique, and it is give by x∗ = Q−1c. Also, since ∇2f(x) = Q is
SPD, the function f is (strictly) convex, so the critical point x∗ = Q−1c must
be the unique global minimum, and are there are no other local minima.

Now,, Newton’s method for minimization is

xk+1 = xk − (∇2f(xk))−1(∇f(xk))

= xk −Q−1(Qxk − c)

= xk − xk + Q−1c

= Q−1c = x∗

Thus, no mater what the starting position is, Newton’s method converges in
one step. However, this is not especially useful in this case, since to perform the
first step, we need to solve Qx = c anyway, which is the main difficulty to begin
with. Applying Newton’s method therefore doesn’t reduce the complexity of
this problem. It is more useful for problems with worse nonlinearity.
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4. (a) Find an LDLT factorization of the following symmetric positive-definite
matrix

A =

1 2 4
2 5 6
4 6 22

 ,

that is, write A = LDLT where L is lower-triangular, and D is diagonal.

Solution. First, we find an LU factorization using Gaussian elimination
without pivoting.

A =

1 2 4
2 5 6
4 6 22


∼

1 2 4
0 1 −2
0 −2 6

 ; L =

1 0 0
2 1 0
4 ∗ 1


∼

1 2 4
0 1 −2
0 0 2

 = U ; L =

1 0 0
2 1 0
4 −2 1


In class, we saw that D = L−1UT . Now, what does L−1 look like? Since
L is lower-triangular, so is L−1 (to see why, write LM = I where I is the
identity, and see what the entries of M must be). Also, since L has only
1’s on the diagonal, the same is true about L−1, since1 0 0

0 1 0
0 0 1

 = I = LL−1 =

1 0 0
2 1 0
4 −2 1

a 0 0
∗ b 0
∗ ∗ c


so the only options are a = b = c = 1. Thus,

D = L−1UT =

1 0 0
∗ 1 0
∗ ∗ 1

1 2 4
0 1 −2
0 0 2

 =

1 0 0
0 1 0
0 0 2


Note: We did not compute L−1 here. We only used properties of it.
We now have,

A = LDLT =

1 0 0
2 1 0
4 −2 1

1 0 0
0 1 0
0 0 2

1 0 0
2 1 0
4 −2 1

T

.
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(b) Rewrite the LDLT factorization to form an LLT (i.e. Cholesky) factor-
ization.

Solution. Using D from above, we find

D =

1 0 0
0 1 0
0 0 2

 =

1 0 0
0 1 0

0 0
√

2

1 0 0
0 1 0

0 0
√

2

 :=
√
D
√
D.

Therefore,

A = LDLT = L
√
D
√
DLT

=

1 0 0
2 1 0
4 −2 1

1 0 0
0 1 0

0 0
√

2

1 0 0
0 1 0

0 0
√

2

1 2 4
0 1 −2
0 0 1


=

1 0 0
2 1 0

4 −2
√

2

1 2 4
0 1 −2

0 0
√

2

 = L̃L̃T .

This is the Cholesky factorization, which is unique.

(c) Use either LDLT or the LLT the factorization of the above matrix to solve
Ax = b, where

b =

 1
6
−6

 .

Hint: Use forward substitution and back substitution.

Solution. We only demonstrate the Cholesky solve here; LDLT is similar.
The idea is to solve is stages. First, note that solving Ax = b is the same
as solving LLTx = b, since A = LLT . Thus, we solve first Ly = b, and
then LTx = y, and we do it not by inverting a matrix, but by simple
substitution, which is much faster.

1 0 0
2 1 0

4 −2
√

2

y1y2
y3

 =

 1
6
−6
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We quickly see that y1 = 1. Then 2y1 + 1y2 = 6, so y2 = 4. Then
4y1 − 2y2 +

√
2y3 = −6, so y3 = −

√
2. Next, we solve1 2 4

0 1 −2

0 0
√

2

x1

x2

x3

 =

 1
−6

−
√

2


This solve goes backwards. We first get x3 = 1√

2
(−
√

2) = −1. Next, we
work on x2 to find 1x2−2x3 = −6 so that x2 = 2. Finally, 1x2+2x2+4x3 =
1, so x3 = 1. Thus

x =

 1
2
−1

 .

5. Bonus (1 point): Write a program that computes the Cholesky factorization.
It is OK to look online or at other resources to get ideas, but then close the
webpage, book, etc., and write your code on your own. You will learn more
and grow stronger if you do it this way.

Solution. See the following Matlab code, saved as cholesky.m, for one possible
solution.
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1 function L = cholesky(A);

2 % Compute the Cholesky decomposition of an SPD matrix A.

3 n = size(A,1);

4 L = zeros(n,n); % Wasteful , since we only need to store the lower -tri part.

5
6 tol = 1e-15;

7
8 for j = 1:n

9 LjjSquared = A(j,j) - L(j,:)*L(j,:)';
10 if LjjSquared < tol

11 error('Matrix is either not SPD , or badly scaled.');
12 end

13 L(j,j) = sqrt(LjjSquared );

14
15 for i = (j + 1):n

16 L(i,j) = (A(i,j) - L(j,:)*L(i,:)')/L(j, j);

17 end

18 end

19
20 end


