
Math 433/833 Assignment # 7 Assigned: 2016.02.16
Due: 2016.02.23

0. Read sections 14.1, 14.2, 14.3, and 14.5 in the book.

1. Problem 2.2(i) on page 489. Determine the minimizers/maximizers of the fol-
lowing functions subject to the given constraints.

f(x1, x2) = x1x
3
2 subject to 2x1 + 3x2 = 4.

Solution. For this problem we will use the x = x̄+ Zv method and minimize
φ(v). So we will need to determine an x̄, find Z, and determine values for v.

A =
(
2 3

)
∼
(
1 3

2

)
and thus,

Z =
(
−3

2
1
)T
.

Next, let x̄ =
(
2 0

)T
(it is a solution to Ax = b). Then,(

x1
x2

)
= x = x̄+ Zv =

(
2
0

)
+

(
−3

2

1

)
v =

(
2− 3

2
v

v

)
Note that v is a scalar. Plugging x into f gives

φ(v) = f(x̄+ Zv) = (2− 3

2
v)(v)3 = 2v3 − 3

2
v4.

Now, we have reduced the constrained optimization problem to an uncon-
strained optimization problem. We simply take the derivative and set it equal
to zero, like in calculus. For a more general problem , we might need to use
an iterative solver like Newton’s method or BFGS, but this problem is nice
enough that we can solve it with algebra.

0
set
= ∇φ(v) = 6v2 − 6v3 ⇒ 6v2 = 6v3 ⇒ v = 0 or v = 1.

From here we can see that when v = 0 we will get x1 = 2 and x2 = 0. On the
other hand when v = 1 we will get x1 = 1

2
and x2 = 1. Next, we’ll use these

values to determine the type of stationary points these values may be.

∇f(x) =

(
x32

3x1x
2
2

)
and ∇2f(x) =

(
0 3x22

3x22 6x1x2

)
Next, we’ll use Lemma 14.2 to check the stationary point x∗ =

(
2 0

)T
. So we

need to check that ZT∇f(x∗) = 0 and ZT∇2f(x∗)Z is positive definite.

ZT∇f(x∗) =
(
−3

2
1
)(0

0

)
= 0

ZT∇2f(x∗)Z =
(
−3

2
1
)(0 0

0 0

)(
−3

2

1

)
= 0



Math 433/833 Assignment # 7 Assigned: 2016.02.16
Due: 2016.02.23

Thus, the reduced Hessian is only semidefinite, and we cannot conclude that
x∗ = (2, 0) is a local minimizer. (Lemma 14.2 only gives a necessary, but not
sufficient condition.)

Next, we’ll use Lemma 14.3 to check the stationary point x∗ =
(
1
2

1
)T

. For
Lemma 14.3 we need to check that Ax∗ = b, ZT∇f(x∗) = 0, and ZT∇2f(x∗)Z
is positive definite.

Ax∗ =
(
2 3

)(1
2

1

)
=
(
4
)

= b

ZT∇f(x∗) =
(
−3

2
1
)(1

3
2

)
= 0

ZT∇2f(x∗)Z =
(
−3

2
1
)(0 3

3 3

)(
−3

2

1

)
= −6

Although we can see that ZT∇2f(x∗)Z is not positive definite, it is negative

definite which implies that x∗ =
(
1
2

1
)T

is a strict local maximizer of f .

2. Problem 2.2(vii) on page 490. Determine the minimizers/maximizers of the
following functions subject to the given constraints.

f(x1, x2) =
1

3
x31 + x2 subject to x21 + x22 = 1

Solution. This problem has a nonlinear constraint, so the method used in the
previous problem does not apply. Instead, we will use the Lagrangian function
in its nonlinear form, namely, L(x, λ) = f(x) − λT∇g(x) (note that since we
only have one constraint in this problem, λ is a scalar, so λT = λ).

L(x1, x2, λ) =
1

3
x31 + x2 − λ(x21 + x22 − 1) =

1

3
x31 + x2 − λx21 − λx22 + λ

Our task is to find x∗ and λ∗ satisfying ∇L(x∗, λ∗) = 0. Thus, we proceed as
follows.

~0
set
= ∇L =

 x21 − 2λx1
1− 2λx2
−x21 − x22 + 1

 ⇒
x21 = 2λx1
1 = 2λx2

1 = x21 + x22
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Here we can see we have a few choices that we can make. First, assuming x1
is not zero, we can solve for x1 and x2 in terms of λ to arrive at:

x1 = 2λ

x2 =
1

2λ

(2λ)2 +

(
1

2λ

)2

= 1 ⇒ 4λ2 +
1

4λ2
= 1 ⇒ 16λ4 − 4λ2 + 1 = 0.

Note that in general, solving a 4th degree polynomial equation can be hard.
However, there is a special form to this polynomial. Namely, it is 2nd degree
in λ2:

0 = 16λ4 − 4λ2 + 1

= 16(λ2)2 − 4(λ2) + 1

This means we can use the quadratic formula to solve for λ2!

λ2 =
4±
√

42 − 4 · 16 · 1
2 · 16

=
4±
√

16− 64

32
.

We have a negative under the square root, so there are no real solutions for
λ. Moreover, since x1 = 2λ and x2 = 1

2λ
, if λ is complex, x1 and x2 will be

complex as well, but they are assumed to be real, so we must choose different
values. Thus, the only possibility is that x1 = 0.

Thus, we assume x1 = 0 and similarly from above we can solve for λ and x2 as
follows.

x1 = 0

1 = (0)2 + (x2)
2 ⇒ x2 = ±1 (from constraint)

1 = 2λ(±1) ⇒ λ = ±1

2

Thus, we can check these two possibilities x1 = 0, x2 = 1, and λ = 1
2

and
x1 = 0, x2 = −1, and λ = −1

2
. We will use Theorem 14.16, so we’ll need to

check that ∇xL(x∗, λ∗) = 0 and Z(x∗)
T∇2

xxL(x∗, λ∗)Z(x∗) is positive definite.
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First, we’ll consider the first stationary point x∗ =
(
0 1

)T
and λ∗ = 1

2
.

∇g(x) =

(
2x1
2x2

)
and ∇g(x∗) =

(
0
2

)
so let Z =

(
1
0

)
∇2
xxL(x, λ) =

(
2x1 0
0 0

)
− λ

(
2 0
0 2

)
=

(
2x1 − 2λ 0

0 −2λ

)
so ∇2

xxL(x∗, λ∗) =

(
−1 0
0 −1

)
Z(x∗)

T∇2
xxL(x∗, λ∗)Z(x∗) ⇒

(
1 0

)(−1 0
0 −1

)(
1
0

)
= −1

Although Z(x∗)
T∇2

xxL(x∗, λ∗)Z(x∗) is not positive definite, it is negative def-

inite and thus x∗ =
(
0 1

)T
is a local maximizer of f . Finally, we’ll consider

the other stationary point x∗ =
(
0 −1

)T
and λ∗ = −1

2
.

∇g(x∗) =

(
0
−2

)
so let Z =

(
1
0

)
∇2
xxL(x∗, λ∗) =

(
1 0
0 1

)
Z(x∗)

T∇2
xxL(x∗, λ∗)Z(x∗) ⇒

(
1 0

)(1 0
0 1

)(
1
0

)
= 1

The stationary point x∗ =
(
0 −1

)T
and associated λ∗ = −1

2
satisfies all the

conditions for Theorem 14.16 and thus x∗ is a strict local minimizer of f .

3. Problem 5.2 on page 509. Solve the problem

minimize f(x) = cTx

subject to
n∑
i=1

xi = 0

n∑
i=1

x21 = 1

Solution. We solve this problem using the Lagrangian method. First, we’ll
make the constraints easier to use in the function by defining them in a different
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way.

Let w =
(
1 1 · · · 1

)T
.

Note that: wTx =
n∑
i=1

xi = 0

and xTx =
n∑
i=1

x21 = 1.

Next, we write down the Lagrangian function and set its gradient equal to zero

L = cTx− λT
(

wTx
xTx− 1

)
= cTx− λ1wTx− λ2xTx+ λ2

0
set
= ∇L = c− λ1w − λ2x

⇒ x =
1

λ2
(c− λ1w)

We take the dot-product of the last relationship with w, x, and c, to obtain:

(1)



wTx =
1

λ2
(wT c− λ1wTw)

xTx =
1

λ2
(xT c− λ1xTw)

cTx =
1

λ2
(cT c− λ1cTw)

From the constraints, we know that wTx = 0, and xTx = 1. Also, note
that cT c = ‖c‖2,wTw = n, and cTw =

∑n
i=1 ci = n 1

n

∑n
i=1 ci = nc, where

c = 1
n

∑n
i=1 ci denotes the average value of the components of the vector c.

Using these relations, we obtain

(2)



0 =
1

λ2
(nc− nλ1)

1 =
1

λ2
xT c

cTx =
1

λ2
(‖c‖2 − λ1nc)

From the first equation, we see that λ1 = c. Note that xT c = x ·c = c ·x = cTx,
and that, from the second equation, λ2 = xT c. Thus, we can combine this with
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the third equation to obtain:

λ2 =
1

λ2
(‖c‖2 − λ1nc)

⇒ λ22 = ‖c‖2 − λ1nc
= ‖c‖2 − nc2 (using λ1 = c)

= n

 1

n

n∑
i=1

c2i −

(
1

n

n∑
i=1

ci

)2
 (by definitions and algebra)

Now, we would like to take a square root to find λ2, but how do we know
the right-hand side is non-negative? Note that the question of whether the
right-hand side is non-negative is the question of whether the average of the
squares is greater than or equal to the square of the average. To prove that it is
(you are not required to for your homework), we can use the Cauchy-Schwarz
inequality:

|~x · ~y| = ‖~x‖‖~y‖| cos(θ)| ≤ ‖~x‖‖~y‖

Letting ~x = c and ~y = w, we find that

|nc| =
∣∣cTw∣∣ = |c · w| ≤ ‖c‖‖w‖ =

√
n‖c‖

Squaring both sides and dividing by n, we find,

nc2 ≤ ‖c‖2

so that ‖c‖2 − nc2 ≥ 0. Thus, we can indeed take a square root, and we find

λ2 = ±
√
‖c‖2 − nc2.

Substituting λ1 and λ2 back into x, we obtain

x =
1

λ2
(c− λ1w) = ± c− cw√

‖c‖2 − nc2
.

Therefore, at these two points, we find

f(x) = cTx = ± ‖c‖
2 − nc2√
‖c‖2 − nc2

= ±
√
‖c‖2 − nc2

One point is positive, the other is negative. Therefore, we have found that the
maximum is

√
‖c‖2 − nc2 and occurs at x = c−cw√

‖c‖2−nc2
, and the minimum is

−
√
‖c‖2 − nc2 and occurs at x = − c−cw√

‖c‖2−nc2
.


