Consider the problem of minimizing

$$
f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b},
$$

for $\mathbf{x} \in \mathbb{R}^n$, where A is a given SPD (symmetric positive-definite) matrix, and **b** is a given vector. First, we note a few easy-to-prove facts:

- 1. $\nabla f(\mathbf{x}) = \frac{1}{2}(A^T + A)\mathbf{x} \mathbf{b} = A\mathbf{x} \mathbf{b}$ (since A is symmetric, i.e., $A^T = A$).
- 2. $\nabla \nabla^T f(\mathbf{x}) = \frac{1}{2}(A^T + A) = A$. In particular, f is a convex function, since its Hessian is positive-definite.
- 3. Since A is SPD, A is invertible, so $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- 4. The problem of minimizing $f(\mathbf{x})$ and the problem of solving $A\mathbf{x} = \mathbf{b}$ are equivalent, in the sense that they have the same solution.

Let us consider an iteration scheme for the problem, given by

$$
\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{p}_i \tag{1}
$$

where the vector \mathbf{p}_i and the scalar α_i and are to be chosen. (The vector \mathbf{p}_i is called the search direction.)

Let **x** be the exact solution, i.e., **x** satisfies A **x** = **b**. We define:

 ${\bf e}_i = {\bf x}_i - {\bf x} =$ the error $\mathbf{r}_i = \mathbf{b} - A\mathbf{x}_i = \text{the residual (i.e., the error in the output)}$

Note that

$$
A\mathbf{e}_i = A(\mathbf{x}_i - \mathbf{x}) = A\mathbf{x}_i - A\mathbf{x} = A\mathbf{x}_i - \mathbf{b} = -\mathbf{r}_i
$$
(2)

We now make a choice:

Then,

$$
\mathbf{p}_i = -\nabla f(\mathbf{x}_i) = -(A\mathbf{x}_i - \mathbf{b}) = \mathbf{r}_i
$$

so that (1) becomes

$$
\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{r}_i \tag{3}
$$

Now that we have decided on \mathbf{p}_i , we need to determine α_i . This can be done be choosing the best possible value by letting α vary, and using calculus. Consider the function defined by

$$
\varphi(\alpha) := f(\mathbf{x}_i + \alpha \mathbf{r}_i)
$$

Since f is convex, φ has a unique global minimum. Since we are trying to minimize f, the minimizer of φ will be the α_i we pick. To find what it is, we set $\varphi'(\alpha) = 0$ and use the multi-variable chain rule to compute:

$$
0 = \varphi'(\alpha) = \mathbf{r}_i^T \nabla f(\mathbf{x}_i + \alpha \mathbf{r}_i)
$$

= $\mathbf{r}_i^T (A(\mathbf{x}_i + \alpha \mathbf{r}_i) - \mathbf{b})$
= $\mathbf{r}_i^T (A\mathbf{x}_i - \mathbf{b} + \alpha A\mathbf{r}_i)$
= $\mathbf{r}_i^T (-\mathbf{r}_i + \alpha A\mathbf{r}_i)$
= $-\mathbf{r}_i^T \mathbf{r}_i + \alpha \mathbf{r}_i^T A\mathbf{r}_i$.

Solving for α (and calling it α_i), we find:

$$
\alpha_i = \frac{\mathbf{r}_i^T \mathbf{r}_i}{\mathbf{r}_i^T A \mathbf{r}_i}.
$$

Note that, since A is SPD, if $\mathbf{r}_i \neq \mathbf{0}$, then $\mathbf{r}_i^T A \mathbf{r}_i > 0$, to there is no divide-by zero error. On the other hand, if $r_i = 0$, then the algorithm can stop, since this means we have found an exact solution! Our iteration scheme can be written down as follows.

Steepest Descent Algorithm (naïve form):
Given
$$
\mathbf{x}_i
$$
, \mathbf{b} , and an SPD matrix A, set

$$
\mathbf{r}_i = \mathbf{b} - A\mathbf{x}_i
$$

$$
\alpha_i = \frac{\mathbf{r}_i^T \mathbf{r}_i}{\mathbf{r}_i^T A \mathbf{r}_i}
$$

$$
\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{r}_i
$$

Next, we note an important fact about the steepest descent algorithm: successive residuals are orthogonal. To see this, note that, using the above algorithm:

$$
\mathbf{r}_i^T \mathbf{r}_{i+1} = \mathbf{r}_i^T (\mathbf{b} - A\mathbf{x}_{i+1}) = \mathbf{r}_i^T (\mathbf{b} - A(\mathbf{x}_i + \alpha_i \mathbf{r}_i))
$$

\n
$$
= \mathbf{r}_i^T (\mathbf{b} - A\mathbf{x}_i - \alpha_i A\mathbf{r}_i)
$$

\n
$$
= \mathbf{r}_i^T (\mathbf{r}_i - \alpha_i A\mathbf{r}_i)
$$

\n
$$
= \mathbf{r}_i^T \mathbf{r}_i - \alpha_i \mathbf{r}_i^T A\mathbf{r}_i = \mathbf{r}_i^T \mathbf{r}_i - \left(\frac{\mathbf{r}_i^T \mathbf{r}_i}{\mathbf{r}_i^T A\mathbf{r}_i}\right) \mathbf{r}_i^T A\mathbf{r}_i = 0.
$$

Thus, \mathbf{r}_i is orthogonal to \mathbf{r}_{i+1} .

Another thing to notice is that

$$
\mathbf{r}_{i+1} = \mathbf{b} - A\mathbf{x}_{i+1} = \mathbf{b} - A(\mathbf{x}_i + \alpha_i \mathbf{r}_i) = \mathbf{b} - A\mathbf{x}_i - \alpha_i A\mathbf{r}_i = \mathbf{r}_i - \alpha_i A\mathbf{r}_i.
$$

Thus, we don't really need to compute $A\mathbf{x}_i$ to find \mathbf{r}_{i+1} , so long as we store \mathbf{r}_i and Ar_i that we computed on the previous step. This can reduce the computational cost at the (usually small) cost of storing two additional vectors. The revised algorithms looks like this:

Steepest Descent Algorithm (improved form): Given \mathbf{x}_i , **b**, and an SPD matrix A, and the vectors \mathbf{r}_{i-1} and $z_{i-1} := A r_{i-1}$ from the previous step, compute $\mathbf{r}_i = \mathbf{r}_{i-1} - \alpha_i \mathbf{z}_{i-1}$ $z_i = A r_i$ $\alpha_i =$ $\mathbf{r}_i^T\mathbf{r}_i$ $\mathbf{r}_i^T\mathbf{z}_i$ $\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{r}_i$

The fact that we don't have to compute $A\mathbf{x}_i$ anymore is often a great improvement. The revised algorithm requires only one matrix-vector multiplication per iteration. The algorithm itself is mathematically identical (although round-off errors may make the algorithms computationally different).

Next, let us consider the error. Above, we defined $\mathbf{e}_i = \mathbf{x}_i - \mathbf{x}$. Thus, from the steepest descent algorithm,

$$
\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{r}_i
$$

\n
$$
\Rightarrow \quad \mathbf{x}_{i+1} - \mathbf{x} = \mathbf{x}_i - \mathbf{x} + \alpha_i \mathbf{r}_i
$$

\n
$$
\Rightarrow \quad \mathbf{e}_{i+1} = \mathbf{e}_i + \alpha_i \mathbf{r}_i
$$
\n(4)

$$
\Rightarrow \quad A\mathbf{e}_{i+1} = A\mathbf{e}_i + \alpha_i A\mathbf{r}_i \tag{5}
$$

$$
\Rightarrow -\mathbf{r}_{i+1} = -\mathbf{r}_i + \alpha_i A \mathbf{r}_i \tag{6}
$$

where we used (2) . Now, we can't say very much about the convergence rate from equation [\(4\)](#page-2-0) directly.

However, using (2) and equation (4) , we find

$$
\mathbf{e}_{i+1}^T A \mathbf{e}_{i+1} = (\mathbf{e}_i + \alpha_i \mathbf{r}_i)^T (-\mathbf{r}_{i+1})
$$
\n
$$
= -\mathbf{e}_i^T \mathbf{r}_{i+1} - \alpha_i \mathbf{r}_i^T \mathbf{r}_{i+1}
$$
\n
$$
= -\mathbf{e}_i^T \mathbf{r}_{i+1} - \alpha_i \mathbf{r}_i^T \mathbf{r}_{i+1}
$$
\n(since $\mathbf{r}_i^T \mathbf{r}_{i+1} = 0$)\n
$$
= \mathbf{e}_i^T (-\mathbf{r}_i + \alpha_i A \mathbf{r}_i)
$$
\n(since $\mathbf{r}_i^T \mathbf{r}_{i+1} = 0$)\n
$$
= (-A^{-1} \mathbf{r}_i)^T (-\mathbf{r}_i + \alpha_i A \mathbf{r}_i)
$$
\n(since A is symmetric)\n
$$
= -\mathbf{r}_i^T A^{-1} (-\mathbf{r}_i + \alpha_i A \mathbf{r}_i)
$$
\n(since A is symmetric)\n
$$
= \mathbf{r}_i^T A^{-1} \mathbf{r}_i - \alpha_i \mathbf{r}_i^T \mathbf{r}_i
$$
\n
$$
= \mathbf{r}_i^T A^{-1} \mathbf{r}_i - \alpha_i \mathbf{r}_i^T \mathbf{r}_i
$$
\n
$$
= \mathbf{r}_i^T A^{-1} \mathbf{r}_i \left(1 - \frac{(\mathbf{r}_i^T \mathbf{r}_i)^2}{(\mathbf{r}_i^T A \mathbf{r}_i)(\mathbf{r}_i^T A^{-1} \mathbf{r}_i)} \right)
$$
\n
$$
= (-A\mathbf{e}_i)^T A^{-1} (-A\mathbf{e}_i) \left(1 - \frac{(\mathbf{r}_i^T \mathbf{r}_i)^2}{(\mathbf{r}_i^T A \mathbf{r}_i)(\mathbf{r}_i^T A^{-1} \mathbf{r}_i)} \right)
$$
\n(sing (2))\n
$$
= \mathbf{e}_i^T A^T A^{-1} (A\mathbf{e}_i) \left(1 - \frac{(\mathbf{r}_i^T \mathbf{r}_i)^2}{(\mathbf{r}_i^T A \mathbf{
$$

Let us introduce the notation $\|\mathbf{x}\|_{A}^{2} = \mathbf{x}^{T} A \mathbf{x}$. It is straight-forward to show that, so long as A is SPD, $\|\cdot\|_A$ is a norm. Thus, the above relation can be simplified to

$$
\|\mathbf{e}_{i+1}\|_{A}^{2} = \|\mathbf{e}_{i}\|_{A}^{2} \left(1 - \frac{\|\mathbf{r}_{i}\|^{4}}{\|\mathbf{r}_{i}\|_{A}^{2}\|\mathbf{r}_{i}\|_{A^{-1}}^{2}}\right).
$$

(Note that the above identity shows that if \mathbf{r}_i happens to be an eigenvector of A, then the convergence is immediate).

Let Λ and λ be the largest and smallest eigenvalues of A, respectively (recall that, since A is SPD, all its eigenvalues are positive). It a standard result that

$$
\frac{1}{\lambda} = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^T A^{-1} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \text{and} \quad \Lambda = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}.
$$

Thus,

$$
1 - \frac{(\mathbf{r}_i^T \mathbf{r}_i)^2}{(\mathbf{r}_i^T A \mathbf{r}_i)(\mathbf{r}_i^T A^{-1} \mathbf{r}_i)} = 1 - \frac{1}{\frac{(\mathbf{r}_i^T A \mathbf{r}_i)(\mathbf{r}_i^T A^{-1} \mathbf{r}_i)}{(\mathbf{r}_i^T \mathbf{r}_i)} \cdot \frac{(\mathbf{r}_i^T A^{-1} \mathbf{r}_i)}{(\mathbf{r}_i^T \mathbf{r}_i)}} \le 1 - \frac{1}{\Lambda \frac{1}{\lambda}} = 1 - \frac{\lambda}{\Lambda}.
$$

Therefore, if $\lambda < \Lambda$ (that is, there is a "gap" between the largest and smallest eigenvalues), then

$$
\|\mathbf{e}_{i+1}\|_{A}^{2} \leq \|\mathbf{e}_{i}\|_{A}^{2} (1 - \frac{\lambda}{\Lambda}) < \|\mathbf{e}_{i}\|_{A}^{2}
$$

Thus, the steepest descent method must converge. In fact, a hard lemma called the Kantorovich Lemma shows a sharper bound, namely, it implies that, for any $x \neq 0$,

$$
\left(\frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}\right) \left(\frac{\mathbf{x}^T A^{-1} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}\right) \le \frac{(\Lambda + \lambda)^2}{4\lambda\Lambda}
$$

so that

$$
1 - \frac{1}{\frac{(\mathbf{r}_i^T A \mathbf{r}_i)}{(\mathbf{r}_i^T \mathbf{r}_i)} \frac{(\mathbf{r}_i^T A^{-1} \mathbf{r}_i)}{(\mathbf{r}_i^T \mathbf{r}_i)}} \le 1 - \frac{4\lambda\Lambda}{(\Lambda + \lambda)^2} = \frac{(\Lambda - \lambda)^2}{(\Lambda + \lambda)^2} = \left(\frac{1 - \frac{\lambda}{\Lambda}}{1 + \frac{\lambda}{\Lambda}}\right)^2
$$

Thus, we have the sharper bound

$$
\|\mathbf{e}_{i+1}\|_{A} \leq \frac{1-\frac{\lambda}{\Lambda}}{1+\frac{\lambda}{\Lambda}}\|\mathbf{e}_{i}\|_{A}.
$$

In particular,

$$
\lim_{i \to \infty} \frac{\|\mathbf{e}_{i+1}\|_A}{\|\mathbf{e}_i\|_A} \le \frac{1 - \frac{\lambda}{\Lambda}}{1 + \frac{\lambda}{\Lambda}} = \frac{\Lambda - \lambda}{\Lambda + \lambda},
$$

so that the convergence is at least linear. In practice, the convergence is no better than linear for a general SPD matrix. Note also that the larger $\Lambda - \lambda$ is, the slower the convergence. Matrices which have one very large eigenvalue and one very small eigenvalue are often called "ill-conditioned" or "stiff". Solving such problems via a direct approach can often lead to slow convergence. Hence methods such as "preconditioning" are often employed.