
Steepest Descent Adam Larios

Consider the problem of minimizing

f(x) = 1
2
xTAx− xTb,

for x ∈ Rn, where A is a given SPD (symmetric positive-definite) matrix, and b is a
given vector. First, we note a few easy-to-prove facts:

1. ∇f(x) = 1
2
(AT + A)x− b = Ax− b (since A is symmetric, i.e., AT = A).

2. ∇∇Tf(x) = 1
2
(AT + A) = A. In particular, f is a convex function, since its

Hessian is positive-definite.

3. Since A is SPD, A is invertible, so Ax = b has a unique solution.

4. The problem of minimizing f(x) and the problem of solving Ax = b are equiv-
alent, in the sense that they have the same solution.

Let us consider an iteration scheme for the problem, given by

xi+1 = xi + αipi (1)

where the vector pi and the scalar αi and are to be chosen. (The vector pi is called
the search direction.)

Let x be the exact solution, i.e., x satisfies Ax = b. We define:

ei = xi − x = the error

ri = b− Axi = the residual (i.e., the error in the output)

Note that

Aei = A(xi − x) = Axi − Ax = Axi − b = −ri (2)

We now make a choice:
Let us decide that the search direction will be in the direction

of steepest descent from xi, that is:
pi = −∇f(xi)

Then,

pi = −∇f(xi) = −(Axi − b) = ri

so that (1) becomes

xi+1 = xi + αiri (3)
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Now that we have decided on pi, we need to determine αi. This can be done be
choosing the best possible value by letting α vary, and using calculus. Consider the
function defined by

ϕ(α) := f(xi + αri)

Since f is convex, ϕ has a unique global minimum. Since we are trying to minimize
f , the minimizer of ϕ will be the αi we pick. To find what it is, we set ϕ′(α) = 0
and use the multi-variable chain rule to compute:

0 = ϕ′(α) = rTi ∇f(xi + αri)

= rTi (A(xi + αri)− b)

= rTi (Axi − b + αAri)

= rTi (−ri + αAri)

= −rTi ri + αrTi Ari.

Solving for α (and calling it αi), we find:

αi =
rTi ri
rTi Ari

.

Note that, since A is SPD, if ri 6= 0, then rTi Ari > 0, to there is no divide-by zero
error. On the other hand, if ri = 0, then the algorithm can stop, since this means we
have found an exact solution! Our iteration scheme can be written down as follows.

Steepest Descent Algorithm (näıve form):
Given xi, b, and an SPD matrix A, set

ri = b− Axi

αi =
rTi ri
rTi Ari

xi+1 = xi + αiri

Next, we note an important fact about the steepest descent algorithm: successive
residuals are orthogonal. To see this, note that, using the above algorithm:

rTi ri+1 = rTi (b− Axi+1) = rTi (b− A(xi + αiri))

= rTi (b− Axi − αiAri)
= rTi (ri − αiAri)

= rTi ri − αirTi Ari = rTi ri −
(

rTi ri
rTi Ari

)
rTi Ari = 0.
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Thus, ri is orthogonal to ri+1.
Another thing to notice is that

ri+1 = b− Axi+1 = b− A(xi + αiri) = b− Axi − αiAri = ri − αiAri.

Thus, we don’t really need to compute Axi to find ri+1, so long as we store ri and
Ari that we computed on the previous step. This can reduce the computational cost
at the (usually small) cost of storing two additional vectors. The revised algorithms
looks like this:

Steepest Descent Algorithm (improved form):
Given xi, b, and an SPD matrix A, and the vectors ri−1 and
zi−1 := Ari−1 from the previous step, compute

ri = ri−1 − αizi−1

zi = Ari

αi =
rTi ri
rTi zi

xi+1 = xi + αiri

The fact that we don’t have to compute Axi anymore is often a great improve-
ment. The revised algorithm requires only one matrix-vector multiplication per it-
eration. The algorithm itself is mathematically identical (although round-off errors
may make the algorithms computationally different).

Next, let us consider the error. Above, we defined ei = xi − x. Thus, from the
steepest descent algorithm,

xi+1 = xi + αiri

⇒ xi+1 − x = xi − x + αiri

⇒ ei+1 = ei + αiri (4)

⇒ Aei+1 = Aei + αiAri (5)

⇒ −ri+1 = −ri + αiAri (6)

where we used (2). Now, we can’t say very much about the convergence rate from
equation (4) directly.
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However, using (2) and equation (4), we find

eTi+1Aei+1 = (ei + αiri)
T (−ri+1)

= −eTi ri+1 − αirTi ri+1

= −eTi ri+1 (since rTi ri+1 = 0)

= eTi (−ri + αiAri) (using equation (6))

= (−A−1ri)
T (−ri + αiAri) (using (2))

= −rTi A−1(−ri + αiAri) (since A is symmetric)

= rTi (A−1ri − αiri)
= rTi A

−1ri − αirTi ri (using (2))

= rTi A
−1ri −

(
rTi ri
rTi Ari

)
rTi ri

= rTi A
−1ri

(
1− (rTi ri)

2

(rTi Ari)(r
T
i A
−1ri)

)
= (−Aei)TA−1(−Aei)

(
1− (rTi ri)

2

(rTi Ari)(r
T
i A
−1ri)

)
(using (2))

= eTi A
TA−1(Aei)

(
1− (rTi ri)

2

(rTi Ari)(r
T
i A
−1ri)

)
= eTi Aei

(
1− (rTi ri)

2

(rTi Ari)(r
T
i A
−1ri)

)
(since A is symmetric).

Let us introduce the notation ‖x‖2
A = xTAx. It is straight-forward to show that,

so long as A is SPD, ‖ · ‖A is a norm. Thus, the above relation can be simplified to

‖ei+1‖2
A = ‖ei‖2

A

(
1− ‖ri‖4

‖ri‖2
A‖ri‖2

A−1

)
.

(Note that the above identity shows that if ri happens to be an eigenvector of A,
then the convergence is immediate).

Let Λ and λ be the largest and smallest eigenvalues of A, respectively (recall that,
since A is SPD, all its eigenvalues are positive). It a standard result that

1

λ
= max

x 6=0

xTA−1x

xTx
and Λ = max

x 6=0

xTAx

xTx
.
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Thus,

1− (rTi ri)
2

(rTi Ari)(r
T
i A
−1ri)

= 1− 1
(rTi Ari)

(rTi ri)

(rTi A
−1ri)

(rTi ri)

≤ 1− 1

Λ 1
λ

= 1− λ

Λ
.

Therefore, if λ < Λ (that is, there is a “gap” between the largest and smallest
eigenvalues), then

‖ei+1‖2
A ≤ ‖ei‖2

A

(
1− λ

Λ

)
< ‖ei‖2

A

Thus, the steepest descent method must converge. In fact, a hard lemma called the
Kantorovich Lemma shows a sharper bound, namely, it implies that, for any x 6= 0,(

xTAx

xTx

)(
xTA−1x

xTx

)
≤ (Λ + λ)2

4λΛ

so that

1− 1
(rTi Ari)

(rTi ri)

(rTi A
−1ri)

(rTi ri)

≤ 1− 4λΛ

(Λ + λ)2
=

(Λ− λ)2

(Λ + λ)2
=

(
1− λ

Λ

1 + λ
Λ

)2

Thus, we have the sharper bound

‖ei+1‖A ≤
1− λ

Λ

1 + λ
Λ

‖ei‖A.

In particular,

lim
i→∞

‖ei+1‖A
‖ei‖A

≤
1− λ

Λ

1 + λ
Λ

=
Λ− λ
Λ + λ

,

so that the convergence is at least linear. In practice, the convergence is no bet-
ter than linear for a general SPD matrix. Note also that the larger Λ − λ is, the
slower the convergence. Matrices which have one very large eigenvalue and one very
small eigenvalue are often called “ill-conditioned” or “stiff”. Solving such problems
via a direct approach can often lead to slow convergence. Hence methods such as
“preconditioning” are often employed.


