
MATH 934 – FAST FOURIER TRANSFORM

INSTRUCTOR: DR. ADAM LARIOS

Let f be a 2π−periodic continuous function on the interval [0, 2π) = R/(2πZ). Choose a
positive integer n ∈ N, and let N = 2n be the number of gridpoints. Define the (evenly
spaced) interpolation points

xj =
2π

N
j, j = 0, 1, · · · , N − 1.

Let us also denote the functions Ek for k = 0, 1, · · · , N − 1, by

Ek(x) = eikx = (eix)k, where eix = cos(x) + i sin(x).

The set of trigonometric polynomials of degree at most N − 1 is given by

TN =
{N−1∑
k=0

ckEk

∣∣∣ck ∈ C
}

on [0, 2π).

The problem of trigonometric interpolation is to find a trigonometric polynomial function
P ∈ TN defined by

(1)


P (x) =

∑N−1
k=0 ckEk(x)

and

P (xj) = f(xj) for j = 0, 1, · · · , N − 1.

We showed in class that such a polynomial always exists, and gave an explicit formula for
the coefficients ck. Indeed, let

ωN = e2πi/N , ωn = e2πi/n

and define a matrix W to have entry ωkjN at the kth row and jth column. One can show

that W
T
W = NI, so W is invertible. Denote by ~f the vector with entries fj := f(xj),

j = 0, 1, · · · , N − 1, and let ~c denote the vector with values ck, k = 0, 1, · · · , N − 1. Then,

we showed that ~c = 1
N
W

T ~f . Since W is invertible, so there is a one-to-one correspondence

between the function values {f(xj)}N−1
j=0 and the (discrete) Fourier coefficients {ck}N−1

k=0 . The
map

FN : ~f 7−→ ~c =
1

N
W

T ~f

is called the Discrete Fourier Transform (DFT). It has a well-defined inverse called the
Inverse Discrete Fourier Transform. To remind us that the coefficients ck come from f , we
often denote

f̂k := ck =
1

N

N−1∑
j=0

f(xj)Ek(xj).



We now find a more efficient algorithm, the Fast Fourier Transform (FFT) for computing
these coefficients. Let us subdivide the problem into interpolating over even- and odd-
numbered points.

Next, consider the even-numbered points, {x2j}n−1
j=0 and the odd-numbered points, {x2j+1}n−1

j=0 .
Note that

x2j =
2π

N
(2j) =

2π

2n
(2j) =

2π

n
j,

x2j+1 =
2π

N
(2j + 1) =

2π

2n
(2j + 1) =

2π

n
j +

π

n
.

We note the following simple by very important observation:

ck =
1

N

N−1∑
j=0

fjEk(xj) =
1

2n

2n−1∑
j=0

f(xj)Ek(xj)

=
1

2

1

n

n−1∑
j=0

f(x2j)Ek(x2j) +
1

2

1

n

n−1∑
j=0

f(x2j+1)Ek(x2j+1)

=
1

2

1

n

n−1∑
j=0

f(x2j)Ek(x2j) +
1

2
e−iπk/n

1

n

n−1∑
j=0

f(x2j+1)Ek(x2j)

Thus, the Fourier coefficients from the interpolations of odd and even points can be used
to find the Fourier coefficients of all the points.

For the sake of concreteness, let us try this in the case N = 4 = 2n, n = 2. Then

ck = 1
4

4−1∑
j=0

f(xj)Ek(xj)

= 1
4
f(x0)e

−0 2πi
4
k + 1

4
f(x1)e

−1 2πi
4
k + 1

4
f(x2)e

−2 2πi
4
k + 1

4
f(x3)e

−3 2πi
4
k

= 1
4
f(x0) + 1

4
f(x1)e

−πi
2
k + 1

4
f(x2)e

− 2πi
2
k + 1

4
f(x3)e

−3πi
2
k

= 1
2

(
1
2
f(x0) + 1

2
f(x2)e

− 2πi
2
k
)

︸ ︷︷ ︸
c̃evenk

+1
2
e−

πi
2
k
(

1
2
f(x1) + 1

2
f(x3)e

− 2πi
2
k
)

︸ ︷︷ ︸
c̃oddk

.

We see that c̃evenk is the kth Fourier coefficient that would be generated by generating the
Fourier coefficients from just the data f(x0) and f(x2), and c̃oddk is the kth Fourier coefficient
that would be generated by generating the Fourier coefficients from just the data f(x1) and
f(x3).



We can see this another way as well, using the following trick. Let p(x) be the interpolation
at the even-numbered points {x2j}n−1

j=0 of the even-numbered values {f(x2j)}n−1
j=0 . Let q(x)

by the interpolation again at the even-numbered {x2j}n−1
j=0 points, but with the odd-numbered

values {f(x2j+1)}n−1
j=0 . That is,

p(x2j) = f(x2j) and q(x2j) = f(x2j+1).

Then, we define

P̃ (x) = 1
2
(1 + En(x))p(x) + 1

2
(1− En(x))q(x− π

n
)

We will now show that P̃ = P , where P is defined by (1).
To see this, first note that, since j is an integer,

En(x2j) = ein
2π
n
j = e2πij = 1,

En(x2j+1) = ein(
2π
n
j+π

n) = e2πijeiπ = −1.

Thus,

P̃ (x2j) = 1
2
(1 + 1)p(x2j) + 1

2
(1− 1)q(x2j − π

n
) = p(x2j) = f(x2j),

and

P̃ (x2j+1) = 1
2
(1 + (−1))p(x2j+1) + 1

2
(1− (−1))q(x2j+1 − π

n
) = q(x2j) = f(x2j+1).

Moveover, let

p(x) =
n−1∑
j=0

αjEj(x) and q(x) =
n−1∑
j=0

βjEj(x)

Then, since En(x)Ej(x) = En+j(x), we find

P̃ (x) = 1
2
(1 + En(x))

n−1∑
j=0

αjEj(x) + 1
2
(1− En(x))

n−1∑
j=0

βjEj(x− π
n
)

= 1
2
(1 + En(x))

n−1∑
j=0

αjEj(x) + 1
2
(1− En(x))

n−1∑
j=0

βjEj(x)e−πi/n

= 1
2

n−1∑
j=0

(αjEj(x) + βjEj(x)e−πi/n) + 1
2

n−1∑
j=0

(αjEn+j(x)− βjEn+j(x)e−πi/n)

Comparing this with (1), we see that if we set

cj = 1
2
αj + 1

2
e−iπ/nβj, j = 0, 1, . . . , n− 1,

cn+j = 1
2
αj − 1

2
e−iπ/nβj, j = 0, 1, . . . , n− 1,

then we can write

P̃ (x) =
N−1∑
j=0

cjEj(x) = P (x).



This gives us the following algorithm for computing the coefficients, written in Matlab
code. It uses recursion, which means that the function calls itself.

1 function f = demoFFT(f)

2 N = length(f);

3
4 if (N <= 1)

5 return;

6 end

7
8 odd = demoFFT(f(1:2:N));

9 even = demoFFT(f(2:2:N));

10 for j = 1:(N/2)

11 E = exp(-2i*pi*(j-1)/N);

12 f(j) = 0.5*( odd(j) + E*even(j));

13 f(j+N/2) = 0.5*( odd(j) - E*even(j));

14 end

15
16 end

Matlab’s built-in function fft leaves off the 0.5 factors on lines 12 and 13. This has the
result of multiplying the final result by a factor of N . To check that the above code agrees
with Matlab’s fft, you can save the code above as demoFFT and try the following.

>> N = 32; f = rand(1,N); norm(demoFFT(f)*N - fft(f))

This is not the fastest way to code the Fast Fourier Transform (although it is far faster
than computing the Discrete Fourier Transform directly, i.e., by matrix multiplication). It
is just a demo to illustrate the core idea. Many optimizations can be made; some obvious,
so not so obvious. In your codes, it is best if you call Matlab’s built-in function fft, which
is a highly optimized Fast Fourier Transform.


