
MATH 934 – IMPLICIT/EXPLICIT METHODS

INSTRUCTOR: DR. ADAM LARIOS

Consider the viscous Burgers equation in 1D:

(1)

{
ut + uux = νuxx,

u(x, t0) = u0(x).

with periodic boundary conditions on an interval of length L. Here, ν > 0 is the viscosity, f = f(x, t) is a force
or source-term. The function u0 is the initial data, which we will assume to be a periodic, square-integrate

function, i.e.,
∫ L

0
|u0(x)|2 dx <∞ (normally, this won’t be a big issue in our computations).

A fully explicit method for solving an equation with a diffusion term νuxx suffers from a viscous CFL
restriction on the time step; namely, ∆t ≤ C(∆x)2/ν is required for stability with a fully explicit approach.
We might consider using an implicit method, but since Burgers equation is nonlinear, this would require a
very expensive nonlinear solve each time step (e.g., Newton’s method). Can we find a mixture of implicit
and explicit methods to hopefully extract the best of both worlds? That is, keep the nonlinear term explicit,
but make the linear diffusion term implicit?

To try to understand stability of our algorithms, we replace Burgers equation by the following linear
transport-diffusion equation, for a constant speed c > 0,

(2) ut + cux = νuxx.

This equation is linear, so we could handle the whole equation with an implicit method. However, since we
are thinking of it as a model for Burgers equation, we will keep the transport term cux explicit. (If u is
bounded, say by |u| ≤M , we can also think about this as replacing uux by the worst-case scenario Mux.)

As with the heat equation, if we formally express the solution and the forcing via its Fourier series, we
have:

u(x, t) =
∑
k

ûk(t)eik
2πx
L .

This can be used to (formally) transform Burgers equation into the following system of coupled nonlinear
ODEs

d

dt
ûk = −νk2ûk − ikcûk, for each k.(3)

We will look at several methods for this. This is currently an area of active research, so we will keep
things simple, and only look at first-order (i.e., Euler) methods in time.
IMEX
Perhaps the most straight-forward approach is just to apply a regular time-stepping (such as Euler or Runge-
Kutta) for (3), but to use an implicit step for the nonlinear term, and an explicit step for the linear term.
This method is often call IMEX (IM = implicit, EX = explicit). For example, using Euler, we would have

ûn+1
k − ûnk

∆t
= −νk2ûn+1

k − ikcûnk .

Exercise. Show that the CFL restriction for this method is ∆t < 2ν/c2.
Integrating Factor Method
Another approach is to simplify the PDE by using an integrating factor to eliminate the linear term. This
can be expensive if the linear term is given by a matrix, but in Fourier space, the linear term is just a scalar
(in fact, it is multiplication by a diagonal matrix; with −νk2 on the kth diagonal entry). Multiplying (3) by



eνk
2t, we find

d

dt
ûke

νk2t + νk2ûke
νk2t = −ikcûkeνk

2t(4)

⇒ d

dt

(
ûke

νk2t
)

= −ikcûkeνk
2t(5)

We can then apply a time-stepping method to this, using the change-of-variables v̂k = ûke
−νk2t. Runge-

Kutta methods have several simplifications that one can work out. However for simplicity, let us just use
Euler’s method here:

ûn+1
k eνk

2tn+1 − ûnkeνk
2tn

∆t
= −ikceνk

2tn ûnk

Let us simplify this a little. Multiplying by ∆t and then by e−νk
2tn+1 (and noting that tn+1 = tn + ∆t), we

find

ûn+1
k = ûnke

−νk2∆t − ikc∆te−νk
2∆tûnk

= (1− ikc∆t) e−νk
2∆tûnk

We therefore require

| (1− ikc∆t) e−νk
2∆t| < 1

That is,

|1− ikc∆t| < eνk
2∆t

⇒ 1 + k2c2∆t2 < eνk
2∆t

Let x = νk2∆t, and a = c2∆t/ν, so that ax = k2c2∆t2. The above inequality becomes

1 + ax < ex, that is, a <
ex − 1

x
The right-hand side of the last equation is bounded below by 1 for any x > 0, so we only need to require
a < 1 to have the desired inequality. This means c2∆t/ν < 1 from the definition of a, so the requirement on
the time-step becomes

∆t <
ν

c2
.

ETD
A slight modification to the Integrating Factor Method is to solve for the nonlinear term exactly at the
PDE level. This is called Exponential Time Differencing (ETD). It is also referred to as the exponential
integrators method. Integrating (4) on the time interval [tn, tn+1], we find the exact relation (no numerical
approximation yet):

ûk(tn+1)eνk
2tn+1 − ûk(tn)eνk

2tn = −ikc
∫ tn+1

tn

ûk(t)eνk
2t dt

Multiplying by e−νk
2tn+1 (and using the fact that tn+1 = tn + ∆t) yields

ûk(tn+1) = ûk(tn)e−νk
2∆t − ikc

∫ tn+1

tn

ûk(t)e−νk
2(tn+1−t) dt(6)

Since we do not know ûk(t), we cannot perform the integration directly. Therefore, in the ETD method, we
approximate it somehow. Let us try a very simple approximation; namely, on [tn, tn+1], approximate ûk(t)
by the constant value ûk(tn). Then, we find

ûk(tn+1) ≈ ûk(tn)e−νk
2∆t − ikcûk(tn)

∫ tn+1

tn

e−νk
2(tn+1−t) dt



Performing the integration yields

ûk(tn+1) ≈ ûk(tn)e−νk
2∆t − ikcûk(tn)

e−νk
2(tn+1−tn+1) − e−νk2(tn+1−tn)

νk2

⇒ ûk(tn+1) ≈ ûk(tn)e−νk
2∆t − ikcûk(tn)

1− e−νk2∆t

νk2

This yields the following method

ûn+1
k = e−νk

2∆tûnk −
1− e−νk2∆t

νk2∆t
(ikc∆tûnk )(7)

Let us remark that the function

f(x) =

{
1−e−x
x if x 6= 0,

1 if x = 0.

although continuous, can be very badly behaved near x = 0 from a computational perspective, due to
cancellation error of terms which are nearby. Therefore, care must be taken in careful, accurate evaluation of
the corresponding factor in (7). For example, see Higham, ”Accuracy and Stability of Numerical Algorithms”,
p. 20, where the following algorithm is discussed. The seemingly pointless use of a logarithm actually helps
to reduce the computational error.

% Compute f(x) = (exp(x) - 1)/x more accurately.

y = exp(x)

if y == 1

f = 1;

else

f = (y - 1)/log(y);

end


