
MATH 934 – RUNGE-KUTTA PROJECT

INSTRUCTOR: DR. ADAM LARIOS

Before You Begin
Read all of “Matlab Introduction,” emailed to the class, working through each part in Matlab as you go.

If you feel the need for some review, it might be good to go through the document again.

Part I: Making your own ODE solver
Now that you are getting familiar with the basics of Matlab, let’s try something a little more useful. Let’s

solve first-order ODE’s (Ordinary Differential Equations) with initial values:
d

dt
y = f(t, y),

y(t0) = y0.

In this section, you will program two O.D.E. solvers and test their accuracy. The first one is already done
for you below. Type this method out yourself, and see if you can understand each line. When you are
ready, try to run the code. Notice that this code is a function, so you can change the inputs and outputs
easily. Here, we take a time interval t0 ≤ t ≤ T , where with think of t0 as the initial time, and T as the final
time. Let N be the number of points, and calculate the step size h by h = (T − t0)/N .

FILE: forwardEuler.m

1 function [y,t] = forwardEuler(f,t0,T,y0,N)

2 % Solve dy/dt = f(t,y), y(t0)=y0

3 % for t0 <= t <= T, with N time steps.

4 % Sample run:

5 % [y_approx , t] = forwardEuler(@(t,y) sin(t + y), 0.0, 5.0, 0.2, 30);

6 % close all;

7 % plot(t,y_approx ,'-o');
8

9 h = (T - t0)/(N-1); % Calulate and store the step -size

10 t = linspace(t0,T,N); % A vector to store the time values.

11

12 y = zeros(1,N); % Initialize the Y vector.

13

14 y(1) = y0; % Start y at the initial value.

15

16 for i = 1:(N-1)

17 y(i+1) = y(i) + h*f(t(i),y(i)); % Update approximation y at t+h

18 end

CHECK: Are there any orange or red lines on your scroll bar? These are warnings and errors. Hover your
mouse over them to see what they are. Clear them up before running your code. If you have a green box
at the top, Matlab cannot detect any errors or warnings in your code. This doesn’t necessarily mean your
code is error-free though! We will develop a more rigorous test below.

Save the above file as “forwardEuler.m” (without the quotes). It must have this exact name, and must
be in the your current working directory for Matlab to be able to find it. (In Matlab, “folders” are called
“directories.”) Use the command pwd (print working directory) to check your current directory, ls (list) to



list what’s in it, and cd <directory name> to change directory. You can also navigate directories graphically
using the “Current Folder” window.

We will now solve the IVP (initial value problem) given by:
dy

dt
= −ty2

y(0) = 1

Run the code by entering these commands in the terminal:

>> [y_approx ,t]= forwardEuler(@(t,y) -t*y^2, 0.0, 5.0, 1.0, 100);

>> plot(t,y_approx ,'-o');

This will input the function f(t, y) = −ty2, and the values t0 = 0, y0 = 1.0, T = 5.0, and use N = 100
grid-points. Then it will plot1 the approximate solution, t vs. yapprox(t). Try playing with the inputs. Can
you increase the number of points to get a smoother-looking graph? What happens when you change the
initial value, or even the function?

Note that the exact solution is given by y(t) = 2/(2 + t2) (call the solution, say, y exact), and plot both
y exact and y approx on the same graph. Make sure to base these off the same t values! (See the “Matlab
Introduction” document if you need help.) Remember to use “hold on” to make two plots on one window
(see the Matlab Intro worksheet for a detailed example).

Analyzing Error
An numerical approximation is not really any good unless we can say something about how good the

approximation is. In particular, one feature we want is for our error to decrease as the resolution (i.e.,
number of grid-points) increases. There are many way of quantifying error. Usually, we want a global
measure of error, so it is not enough to take, say, the error at the final time; for example, there could have
been crazy errors all along the way, and maybe the two solutions just coincidentally line up at the last time.
Also, we usually want our “error” to be a single number, since looking at the error at each time can often
provide too much information, and it is hard to analyze. Let’s choose a simple way to measure the global
error. For a fixed resolution N, we can define the error to be:

error = max(abs(y_exact - y_approx ));

In mathematics, this can be written as

error = max
i=1...N

|y(ti)− yi|

where yi represents the approximate solution at step i, and y(t) is the exact solution at time t (so that y(ti)
is the exact solution at time ti).

Task 1a: Write a separate code (call it eulerError.m) that runs through increasing resolutions, say reso-
lutions N = 10, 20, 30, . . . , 1000, and calculates the (global) error at each resolution. Use the exact solution
to the IVP you computed by hand above, and call the Euler code as a function (which will be in the
file forwardEuler.m) to compute the approximate solution. This means you will have a loop over the reso-
lutions, probably one line each to compute the exact and approximate solutions, and a line to compute the
error. You will have to save the error in a vector for each resolution as you go, so you will need a “counter”
or “index” for your error. You will also have to save your resolution values in a vector.

Next, plot the resolution (x-axis) vs. error (y-axis). You should see the error decreasing as the resolution
increases. You can get a better picture still by using a log-log plot. Let’s explore that idea briefly.

1For more plotting options, type help plot.



Log-log plots. Suppose you have some data that seems to approximately fit a y = cxp pattern for some
constant c > 0 and some power p. How can we determine the power from just looking at the data? Notice
that (so long as x > 0 and y > 0),

y = cxp

⇒ log(y) = log(cxp)

⇒ log(y) = log(c) + p log(x)

Setting X = log(x), Y = log(y), and C = log(c) we see that

Y = pX + C

Thus, the slope between log(x) and log(y) is p, which is exactly the power. Working backwards, if we ever
have some data, and we suspect there is a power-relationship, we can figure out the power by looking at a
log-log plot and looking at the slope!

Task 1b: Look at a log-log plot of your error. You can do this in Matlab like this:

>> close all;

>> plot(log(resolution),log(error ));

where resolution is a vector holding all your resolution values, and error is a vector holding all the
corresponding errors. Matlab actually has a built-in log-log plotter which makes the axes look better. It
works like this:

>> close all;

>> loglog(resolution ,error);

You should see a slope of −1, at least as N gets large. If you see any other slope, there is an error either
in your forwardEuler.m code, or your error checker. This slope means that

global error ≈ CN−1 ≈ Ch
for some constant C > 0. Thus, if you double your resolution, error should be cut in half.

Higher-Order Methods. Forward Euler is one of the simplest numerical algorithms for solving an IVP,
but its solutions can have a lot of error. Of course, we could decrease the error by using more grid points
(or so we hope), but this means we have to do a lot more work (and accumulate more round-off error). For
Forward Euler, if we double the resolution (i.e., the number of grid points), our error is only 1/2 of what is
was. Is it possible to have a method that when we double the resolution, the error is, say, 1/4 of what is
was? That is, could we have a method such that

global error ≈ CN−2 ≈ Ch2

Such a method would be called a second-order method. Improved Euler is a second order method, but we
also will study a forth-order method (error ≈ CN−4 ≈ Ch4). This means if you double the resolution, the
error is 1/16 of what is was! Let us look at a method which turns out to be a second-order method. It
has several names, including “Improved Euler,” “Runge-Kutta-2 (RK-2),” “Heun’s Method” and “Ralston’s
Method.” To understand where it comes from, consider the Euler methods:

yn+1 = yn + h · f(tn, yn) (Forward Euler)

yn+1 = yn + h · f(tn+1, yn+1) (Backward Euler)

Backward Euler has better stability properties (we will discuss this later), but yn+1 is only implicitly defined,
which means we have to solve an algebraic problem every time step to find yn+1 (unless f is very nice, e.g.,
it is linear, so we can solve it by hand).



We would like to use Backward Euler, but the yn+1 on the right-hand side is not known. Instead, we can
approximate it using forward Euler. We then average the results of the two methods. It looks something
like this (each step is carried out sequentially, starting at the top):

y∗n+1 = yn + h · f(tn, yn) (prediction with forward Euler)

y∗∗n+1 = yn + h · f(tn+1, y
∗
n+1) (use prediction in backward Euler)

yn+1 = 1
2 (y∗n+1 + y∗∗n+1) (average the predictions)

The final yn+1 is what we use as our approximated value. Notice that this is a fully explicit method! It
looks a little messy with all the ∗’s, so let’s make it a little cleaner by first noting that

1
2 (y∗n+1 + y∗∗n+1) = 1

2 [(yn + h · f(tn, yn)) + (yn + h · f(tn+1, y
∗
n+1))]

⇒ yn+1 = yn + h
2 (f(tn, yn) + f(tn + h, yn + h · f(tn, yn))). (1)

since tn+1 = tn + h. Next, note that we are being inefficient, since we compute f(tn, yn) multiple times.
Therefore, we can just save it as a value, say, k1, and use it when we need it. We can now write the method
like this:

(RK-2)


k1 = f(tn, yn)

k2 = f(tn + h, yn + h · k1)

yn+1 = yn + h
2 · (k1 + k2)

This is the Improved Euler Method (or Heun, or RK-2, or Ralphson, etc.). It is an explicit method of
order 2, meaning its error behaves like C · h2 when h is small, where C is some fixed number depending
on the ODE problem, but not depending on h. For short-hand, we say it is an O(h2) method, using the
“Big-O” notation.

Task 2: Prove mathematically that Runge-Kutta-2 (RK-2) is an O(h2) method.
Hint: This is easiest to do from equation (1). Follow the steps we did in class, for showing the local truncation
error for Forward Euler is bounded by Ch2, to show that the local truncation for RK-2 is Ch3. This involves
taking derivatives of the equation several times, using the chain rule, using the third-order Taylor Remainder
Theorem, and using the equation to replace values as you go. Use this to show the global error is bounded by

Ch2.

Runge-Kutta-4. One of the most widely-used numerical algorithms is the Runge-Kutta-4 (RK-4) method.
It is a fourth-order explicit method, given by one of the following equivalent forms.

(RK-4)



k1 = f(tn, yn)

k2 = f(tn + h
2 , yn + h

2 · k1)

k3 = f(tn + h
2 , yn + h

2 · k2)

k4 = f(tn + h, yn + h · k3)

yn+1 = yn + h
6 · (k1 + 2 · k2 + 2 · k3 + k4)

or



k1 = h · f(tn, yn)

k2 = h · f(tn + h
2 , yn + 1

2 · k1)

k3 = h · f(tn + h
2 , yn + 1

2 · k2)

k4 = h · f(tn + h, yn + k3)

yn+1 = yn + 1
6 · (k1 + 2 · k2 + 2 · k3 + k4)

Task 3a: Adapt your forwardEuler.m code to a new code called rk4.m, which solves the IVP using Runge-
Kutta-4. It will be essentially the same, but add a few more lines.

Task 3b: Test your implementation by computing the resolution vs. error as in Task 1b. The slope in the
log-log plot should now be −4 instead of −1. When you see that slope, you will know that your code is
working, and you will have a fourth-order IVP solver!

When you have finished tasks 1-3, show them to me, and I will check them off. If you get stuck, come by,
and we can work though it together! =)

Have fun, and happy coding!



More Information on Runge-Kutta Methods

In general, one can have Runge-Kutta methods of any order. An p-stage method can be give by

(RK-p)



k1 = f(tn, yn)

k2 = f(tn + α2h, yn + β21h · k1)

k3 = f(tn + α3h, yn + β31h · k1 + β32h · k2)

...
...

kp = f(tn + αph, yn + βp1h · k1 + βp2h · k2 + · · ·+ βp,p−1h · kp−1)

yn+1 = yn + h(c1k1 + c2k2 + · · ·+ cpkp)

For any given method the constants αi, βi, and ci are usually looked up in a table (they are determined by
working out the local truncation error with Taylor series, and choosing the constants to make all the terms
cancel up to a desired order). They are typically given in the form of a “Butcher-tableau”, named after
the New Zealand mathematician John Butcher, who works at the University of Auckland. For the method
to be consistent (i.e., for the local truncation error τ → 0 as h → 0), it is sufficient for

∑p
j=1 βi,j = αi for

each i = 2, 3, . . . , p. For example, (RK-p) is given by the Butcher tableau:

0
α2 β21
α3 β31 β32
...

...
. . .

αp βp1 βp2 · · · βp,p−1

c1 c2 · · · cp−1 cp

Forward Euler (RK-1) is given by the Butcher tableau:

0
1

Improved Euler (RK-2) is given by the Butcher tableau:

0
1
2

1
2

0 1

And RK-4 is given by the Butcher tableau:

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

Caution! A p-stage might not be an order-p method! For example, a 5th-order method requires 6 stages.
Matlab’s ODE solver ode45.m is based on Erwin Fehlberg’s method, which is two methods combined into

one, allowing for an adaptive step-size. They have the same coefficients αi, βi, and only differ in the ci
coefficients, so we can write them in the same table as:

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40
16/135 0 6656/12825 28561/56430 -9/50 2/55
25/216 0 1408/2565 2197/4104 -1/5 0

The first bottom row is used to compute a 4th-order accurate solution. The second bottom row is used
to compute a 5th-order accurate solution. If the two results are significantly different, the step size h is
decreased (often in some optimal way), and the calculation is repeated for that step.


