The Orchestra of Partial Differential Equations

Adam Larios

19 January 2017

Landscape Seminar

Outline

2 [Some Easy Differential Equations](#page-22-0)

³ [Some Not-So-Easy Differential Equations](#page-57-0)

Frequency

Frequency

 $u(t) = 0.5 \cos(2t) + 0.125 \cos(8t) + 0.03125 \cos(32t)$ $+1.0 \sin(1t) + 0.25 \sin(4t) + 0.0625 \sin(16t)$

Frequency

 $u(t) = 0.5 \cos(2t) + 0.125 \cos(8t) + 0.03125 \cos(32t)$ $+1.0 \sin(1t) + 0.25 \sin(4t) + 0.0625 \sin(16t)$

Frequency

 $u(t) = 0.5 \cos(2t) + 0.125 \cos(8t) + 0.03125 \cos(32t)$ $+1.0 \sin(1t) + 0.25 \sin(4t) + 0.3125 \sin(16t)$

Frequency

 $u(t) = 1.5 \cos(2t) + 0.125 \cos(8t) + 0.03125 \cos(32t)$ $+1.0 \sin(1t) + 0.25 \sin(4t) + 0.0625 \sin(16t)$

$$
u(t) = \sum_{k=0}^{\infty} (a_k \cos(kt) + b_k \sin(kt))
$$

$$
u(t) = \sum_{k=0}^{\infty} (a_k \cos(kt) + b_k \sin(kt))
$$

$$
e^{ikt} = \cos(kt) + i\sin(kt)
$$

$$
\cos(kt) = \frac{e^{ikt} + e^{-ikt}}{2}
$$

$$
\sin(kt) = \frac{e^{ikt} - e^{-ikt}}{2i}
$$

$$
u(t) = \sum_{k=0}^{\infty} (a_k \cos(kt) + b_k \sin(kt))
$$

$$
e^{ikt} = \cos(kt) + i\sin(kt)
$$

$$
\cos(kt) = \frac{e^{ikt} + e^{-ikt}}{2}
$$

$$
\sin(kt) = \frac{e^{ikt} - e^{-ikt}}{2i}
$$

$$
u(t) = \sum_{k=-\infty}^{\infty} c_k e^{ikt}
$$

$$
c_k = \frac{1}{2} (a_k - ib_k), \quad k > 0,
$$

$$
c_k = \frac{1}{2} (a_k + ib_k), \quad k < 0.
$$

Multi-dimensional Fourier series

$$
u(x) = \sum_{k \in \mathbb{Z}} \widehat{u}_k e^{ikx}
$$

$$
u(\vec{x}) = \sum_{\vec{k} \in \mathbb{Z}^n} \widehat{u}_{\vec{k}} e^{i \vec{k} \cdot \vec{x}}
$$

Multi-dimensional Fourier series

$$
u(x) = \sum_{k \in \mathbb{Z}} \widehat{u}_k e^{ikx}
$$

$$
u(\vec{x}) = \sum_{\vec{k} \in \mathbb{Z}^n} \widehat{u}_{\vec{k}} e^{i \vec{k} \cdot \vec{x}}
$$

$$
\widehat{u}_{\vec{k}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(\vec{x}) e^{-i\vec{k}\cdot\vec{x}} d\vec{x}
$$

(a) Original image

-
- (a) Original image (b) Fourier transform (magnitude)

-
- (a) Original image (b) Fourier transform (magnitude)

(c) Zero-out Fourier coeffcients

Derivatives

$$
u(x) = \sum_{k \in \mathbb{Z}} \widehat{u}_k e^{ikx}
$$

Derivatives

$$
u(x) = \sum_{k \in \mathbb{Z}} \widehat{u}_k e^{ikx}
$$

$$
\frac{d}{dx}u(x) = \sum_{k \in \mathbb{Z}} ik\widehat{u}_k e^{ikx}
$$

Derivatives

$$
u(x) = \sum_{k \in \mathbb{Z}} \widehat{u}_k e^{ikx}
$$

$$
\frac{d}{dx}u(x) = \sum_{k \in \mathbb{Z}} ik\widehat{u}_k e^{ikx}
$$

$$
\frac{d^2}{dx^2}u(x) = \sum_{k \in \mathbb{Z}} (-k^2) \widehat{u}_k e^{ikx}
$$

Derivatives

$$
u(x) = \sum_{k \in \mathbb{Z}} \widehat{u}_k e^{ikx}
$$

$$
\frac{d}{dx}u(x) = \sum_{k \in \mathbb{Z}} ik\widehat{u}_k e^{ikx}
$$

$$
\frac{d^2}{dx^2}u(x) = \sum_{k \in \mathbb{Z}} (-k^2) \widehat{u}_k e^{ikx}
$$

$$
\sum_{i=1}^{n} \frac{1}{i}
$$

Idea

Can the Fourier transform be used to understand differential equations?

Outline

2 [Some Easy Differential Equations](#page-22-0)

³ [Some Not-So-Easy Differential Equations](#page-57-0)

The Simplest Partial Differential Equation

$$
\frac{d\rho}{dt} =
$$

position = $x = x(t)$ $\text{velocity} = v = v(t, x(t)) = \frac{dx}{dt}$ density = $\rho = \rho(t, x(t))$

The Simplest Partial Differential Equation

$$
\frac{d\rho}{dt} = 0
$$

position =
$$
x = x(t)
$$

velocity = $v = v(t, x(t)) = \frac{dx}{dt}$
density = $\rho = \rho(t, x(t))$

The Simplest Partial Differential Equation

$$
\frac{d\rho}{dt} = 0
$$

$$
\frac{d\rho}{dt} = \frac{\partial \rho}{\partial t} + \frac{dx}{dt} \frac{\partial \rho}{\partial x}
$$

$$
= 0
$$

position =
$$
x = x(t)
$$

velocity = $v = v(t, x(t)) = \frac{dx}{dt}$
density = $\rho = \rho(t, x(t))$

The Simplest Partial Differential Equation

$$
\frac{d\rho}{dt} = 0
$$

$$
\frac{d\rho}{dt} = \frac{\partial \rho}{\partial t} + \frac{dx}{dt} \frac{\partial \rho}{\partial x}
$$

$$
= \frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial x} = 0
$$

position =
$$
x = x(t)
$$

velocity = $v = v(t, x(t)) = \frac{dx}{dt}$
density = $\rho = \rho(t, x(t))$

The Simplest Partial Differential Equation

$$
\frac{d\rho}{dt} = 0
$$

$$
\frac{d\rho}{dt} = \frac{\partial \rho}{\partial t} + \frac{dx}{dt} \frac{\partial \rho}{\partial x}
$$

$$
= \frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial x} = 0
$$

Transport Equation

$$
\rho_t + v\rho_x = 0
$$

position =
$$
x = x(t)
$$

velocity = $v = v(t, x(t)) = \frac{dx}{dt}$
density = $\rho = \rho(t, x(t))$

The Simplest Partial Differential Equation

position =
$$
x = x(t)
$$

velocity = $v = v(t, x(t)) = \frac{dx}{dt}$
density = $\rho = \rho(t, x(t))$

$$
\frac{d\rho}{dt} = 0
$$

$$
\frac{d\rho}{dt} = \frac{\partial \rho}{\partial t} + \frac{dx}{dt} \frac{\partial \rho}{\partial x}
$$

$$
= \frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial x} = 0
$$
Transport Equation

$$
\rho_t + v\rho_x = 0
$$

Transport Equation in R *n*

$$
\rho_t + (\vec{v} \cdot \nabla) \rho = 0
$$

$$
(\vec{v} \cdot \nabla)\rho = v_1 \frac{\partial \rho}{\partial x} + v_2 \frac{\partial \rho}{\partial y} + v_3 \frac{\partial \rho}{\partial z}
$$

Idea

What about the water itself? What if we set $\rho = v = u$?

Idea

What about the water itself? What if we set $\rho = v = u$?

Burgers' Equation

$$
u_t + uu_x = 0
$$

Burgers' Equation in R *n*

$$
\vec{u}_t + (\vec{u} \cdot \nabla)\vec{u} = 0
$$

Computer Time!

Figure : Programmers working on ENIAC, one of the first computers (c. 1946)

concentration =
$$
\theta = \theta(x, t)
$$

flux = $f = f(x, t) = f(x)$

concentration =
$$
\theta = \theta(x, t)
$$

flux = $f = f(x, t) = f(x)$

concentration =
$$
\theta = \theta(x, t)
$$

flux = $f = f(x, t) = f(x)$

concentration =
$$
\theta = \theta(x, t)
$$

\nflux = $f = f(x, t) = f(x)$
\n $f(a)$
\n $f(a)$
\n $\theta(x, t_0)$
\n $f(b)$
\n $f(b)$

$$
\frac{d}{dt} \int_{a}^{b} \theta(x, t) dx = f(a) - f(b)
$$

$$
= - \int_{a}^{b} \frac{\partial f}{\partial x} dx
$$

$$
\int_{a}^{b} \frac{\partial \theta}{\partial t} dx = -\int_{a}^{b} \frac{\partial f}{\partial x} dx
$$

Fourier's law:

$$
f=-\nu\frac{\partial\theta}{\partial x},\qquad \nu>0
$$

$$
\int_{a}^{b} \frac{\partial \theta}{\partial t} dx = -\int_{a}^{b} \frac{\partial f}{\partial x} dx
$$

Fourier's law:

$$
f = -\nu \frac{\partial \theta}{\partial x}, \qquad \nu > 0
$$

$$
\int_{a}^{b} \frac{\partial \theta}{\partial t} dx = \int_{a}^{b} \nu \frac{\partial^2 \theta}{\partial x^2} dx
$$

$$
\int_{a}^{b} \frac{\partial \theta}{\partial t} dx = -\int_{a}^{b} \frac{\partial f}{\partial x} dx
$$

Fourier's law:

$$
f = -\nu \frac{\partial \theta}{\partial x}, \qquad \nu > 0
$$

$$
\int_{a}^{b} \frac{\partial \theta}{\partial t} dx = \int_{a}^{b} \nu \frac{\partial^2 \theta}{\partial x^2} dx
$$

Diffusion Equation $\theta_t = \nu \theta_{xx}$ Diffusion Equation in \mathbb{R}^3

$$
\theta_t = \nu(\theta_{xx} + \theta_{yy} + \theta_{zz}) = \nu \triangle \theta
$$

Diffusion Equation and the Fourier Transform

$$
u(x,t) = \sum_{k \in \mathbb{Z}} \widehat{u}_k(t) e^{ikx}
$$

Diffusion Equation and the Fourier Transform

$$
u(x,t) = \sum_{k \in \mathbb{Z}} \widehat{u}_k(t) e^{ikx}
$$

$$
u_{xx} = \sum_{k \in \mathbb{Z}} (-k^2) \widehat{u}_k e^{ikx}
$$

Diffusion Equation and the Fourier Transform

$$
u(x,t) = \sum_{k \in \mathbb{Z}} \widehat{u}_k(t) e^{ikx}
$$

$$
u_{xx} = \sum_{k \in \mathbb{Z}} (-k^2) \widehat{u}_k e^{ikx}
$$

$$
u_t = \sum_{k \in \mathbb{Z}} \frac{d}{dt} \widehat{u}_k e^{ikx}
$$

Diffusion Equation and the Fourier Transform

$$
u(x,t) = \sum_{k \in \mathbb{Z}} \widehat{u}_k(t) e^{ikx}
$$

$$
u_{xx} = \sum_{k \in \mathbb{Z}} (-k^2) \widehat{u}_k e^{ikx}
$$

$$
u_t = \sum_{k \in \mathbb{Z}} \frac{d}{dt} \widehat{u}_k e^{ikx}
$$

$$
\frac{d}{dt}\widehat{u}_k = -\nu k^2 \widehat{u}_k, \quad k \in \mathbb{Z}
$$

Diffusion Equation and the Fourier Transform

$$
u(x,t) = \sum_{k \in \mathbb{Z}} \widehat{u}_k(t) e^{ikx}
$$

$$
u_{xx} = \sum_{k \in \mathbb{Z}} (-k^2) \widehat{u}_k e^{ikx}
$$

$$
u_t = \sum_{k \in \mathbb{Z}} \frac{d}{dt} \widehat{u}_k e^{ikx}
$$

$$
\frac{d}{dt}\widehat{u}_k = -\nu k^2 \widehat{u}_k, \quad k \in \mathbb{Z} \quad \Rightarrow \quad \widehat{u}_k(t) = e^{-\nu k^2 t} \widehat{u}_k(0)
$$

Diffusion Equation and the Fourier Transform

$$
u(x,t) = \sum_{k \in \mathbb{Z}} \widehat{u}_k(t) e^{ikx}
$$

$$
u_{xx} = \sum_{k \in \mathbb{Z}} (-k^2) \widehat{u}_k e^{ikx}
$$

$$
u_t = \sum_{k \in \mathbb{Z}} \frac{d}{dt} \hat{u}_k e^{ikx}
$$

$$
\frac{d}{dt}\widehat{u}_k = -\nu k^2 \widehat{u}_k, \quad k \in \mathbb{Z} \quad \Rightarrow \quad \widehat{u}_k(t) = e^{-\nu k^2 t} \widehat{u}_k(0)
$$

$$
u(x,t) = \sum_{k \in \mathbb{Z}} e^{-\nu k^2 t} \widehat{u}_k(0) e^{ikx}
$$

Computer Time Again!

Figure : Woman working on a Cray supercomputer. (c. 1986)

Backward Diffusion

$$
u_t = -\nu u_{xx}
$$

Backward Diffusion

$$
u_t = -\nu u_{xx}
$$

$$
u(x,t) = \sum_{k \in \mathbb{Z}} e^{+\nu k^2 t} \widehat{u}_k(0) e^{ikx}
$$

Backward Diffusion

$$
u_t = -\nu u_{xx}
$$

$$
u(x,t)=\sum_{k\in\mathbb{Z}}e^{\pm\nu k^2t}\widehat{u}_k(0)e^{ikx}
$$

Massively unstable!

Fourth-Order Diffusion

$$
u_t = -\nu u_{xxxx}
$$

Fourth-Order Diffusion

$$
u_t = -\nu u_{xxxx}
$$

$$
u_{xxxx} = \sum_{k \in \mathbb{Z}} (k^4) \widehat{u}_k e^{ikx}
$$

Fourth-Order Diffusion

$$
u_t = -\nu u_{xxxx}
$$

$$
u_{xxxx} = \sum_{k \in \mathbb{Z}} (k^4) \widehat{u}_k e^{ikx}
$$

$$
u(x,t) = \sum_{k \in \mathbb{Z}} e^{-\nu k^4 t} \widehat{u}_k(0) e^{ikx}
$$

Massively stable!

Third-Order Dispersion

Third-Order Dispersion

$$
u_t = \nu u_{xxx}
$$

$$
u_{xx} = \sum_{k \in \mathbb{Z}} (ik^3) \widehat{u}_k e^{ikx}
$$

Third-Order Dispersion

$$
u_t = \nu u_{xxx}
$$

$$
u_{xx} = \sum_{k \in \mathbb{Z}} (ik^3) \widehat{u}_k e^{ikx}
$$

$$
u(x,t) = \sum_{k \in \mathbb{Z}} e^{i\nu k^3 t} \widehat{u}_k(0) e^{ikx}
$$

Transport-Diffusion Equation

Transport-Diffusion Equation

$$
\rho_t + u\rho_x = \nu \rho_{xx}
$$

Transport-Diffusion Equation in \mathbb{R}^n

$$
\rho_t + (\vec{u} \cdot \nabla)\rho = \nu \triangle \rho
$$

Outline

¹ [Fourier Series](#page-2-0)

2 [Some Easy Differential Equations](#page-22-0)

³ [Some Not-So-Easy Differential Equations](#page-57-0)

Nonlinear Equations

Burgers Equation [Shock Waves, Traffic]

 $u_t + uu_x = v u_{xx}$

Nonlinear Equations

Burgers Equation [Shock Waves, Traffic]

 $u_t + uu_x = v u_{xx}$

Korteweg-de Vries (KdV) Equation [Water Waves]

 $u_t + uu_x = u_{xxx}$

Kuramoto-Sivashinsky (KS) Equation [Flames] $u_t + uu_x = -\lambda u_{xx} - u_{xxxx}$

Navier-Stokes Equations [Incompressible Fluids]

$$
\begin{cases} \vec{u}_t + (\vec{u} \cdot \nabla) \vec{u} = \nu \triangle \vec{u} - \nabla p \\ \nabla \cdot \vec{u} = 0 \end{cases}
$$

Nonlinear Equations

Burgers Equation [Shock Waves, Traffic]

 $u_t + uu_x = v u_{xx}$

Korteweg-de Vries (KdV) Equation [Water Waves]

 $u_t + u u_x = u_{xxx}$

Kuramoto-Sivashinsky (KS) Equation [Flames] $u_t + u u_x = -\lambda u_{xx} - u_{xxxx}$

Navier-Stokes Equations [Incompressible Fluids] $\int \vec{u}_t + (\vec{u} \cdot \nabla) \vec{u} = \nu \triangle \vec{u} - \nabla p$ $\nabla \cdot \vec{u} = 0$

Computer Time Once More!

Figure : Hopper Cray XE6 at NERSC, named after American computer scientist Dr. Grace Hopper, 1906-1992.

Figure : Simulation of a solution to the 3D Navier-Stokes equations.

The Incompressible Navier-Stokes Equations

Claude L.M.H. Navier

George G. Stokes

Unknowns Parameter \vec{u} := Velocity (vector) ν := Kinematic Viscosity $p :=$ Pressure (scalar)

Problem (Leray 1933)

Existence and uniqueness of strong solutions in 3D for all time. (\$1,000,000 Clay Millennium Prize Problem)

Thank you!