
Math 308 - Section 506 - Project 5

Instructor: Dr. Adam Larios

Due date: Thursday, 3 May 2012, 4:30 pm in Blocker 601

Instructions. While there are no specific neatness requirements, your work should look
professional, and you should submit it in a form that would be appropriate for submitting
to a boss at a job you care about. Credit will be given for full, complete, and thoughtful
analysis; however, a good report is not necessarily a long report. Do not submit fluff or filler,
but only quality work that you are proud of.

You are free to choose at most one partner, or work by yourself. If you submit your
project as a group, submit it with all group member’s names clearly labeled on the front.
Please note that each person in a group is responsible for 100% of the work, so it is your
responsibility to keep all group members on task, or to finish the work yourself.Submit all
of your code1, along with any relevant graphs, mathematical calculations, and explanations.

Make sure any graphs are well labeled and well referenced, and that they are
easy to read. Do not just print out graphs and code and expect the grader to be able to
follow it. You need to explain what you are doing at each step. Someone who is familiar
with differential equations, but who does not know about this project, should be able to
read your report and understand it completely.

By returning this project, you agree to follow the Aggie Honor Code. In particular,
please be sure any code you represent as your own is 100% written by you and your group
members.

Introduction We propose to implement a Runge-Kutta method to solve the following
generic first-order ODE: 

d

dt
y = f(t, y),

y(t0) = y0,

for t0 ≤ t ≤ T , where with think of t0 as the initial time, and T as the final time. Let N be
a positive integer, and define h := (T − t0)/N . The follow numerical algorithm (written in
pseudo-code) yields an approximation Yi of y at ti = t0 + (i− 1)h for i = 1, . . . , N + 1.

1There is no need to submit code which was not written by your group.



t← t0

y ← y0

ti ← t

Y0 ← y

FOR i = 2, . . . , N + 1

k1 ← f(t, y)

k2 ← f(t+ 0.5 · h, y + 0.5 · h · k1)
k3 ← f(t+ 0.5 · h, y + 0.5 · h · k2)
k4 ← f(t+ h, y + h k3)

t← x+ h

y ← y + h · (k1 + 2k2 + 2k3 + k4)/6

ti ← t

Yi ← y

END

Your first task will be to implement this in Matlab. To give you a guide, here is a Matlab
implementation of the explicit Euler method. Try typing this method out yourself, and see
if you can understand each line (it might take several read-throughs and a few Matlab runs
before you really understand it).

1 %% FILE forward_euler.m %%

2
3 function [Y]= forward_euler(f,t0,T,y0 ,h)

4 % Solve dy/dt = f(t,y), y(t0)=y0

5 % for t0 <= t <= T, and with mesh size h

6
7 % Initialize variables

8 t = t0;

9 y = y0;

10 Y = zeros(1,N);

11 Y(1) = y; % initial value

12 i = 1; % index

13
14 while t<T

15 Y(i+1) = Y(i) + h*f(t,Y(i)); % Update approximation Y at t+h

16 t = t+h; % Update t

17 i = i+1; % Update i

18 end

19
20 %%% END FILE %%%



Example: With the above “forward euler.m” file saved in the working directory 2, to solve
the ODE 

d

dt
y =

2y

t2 + 1
,

y(t0) = 1,

for 0 ≤ t ≤ 2 using h = 0.1, execute the following commands in Matlab:

1>> f = @(t,y) 2*y/(t^2+1);

2>> Y = forward_euler(f,0,2 ,1,0.1);

3>> plot(Y);

Part I. Implement the above Euler method, and then adapt your code in a different file to
implement the Runge-Kutta method. To test your implementations, proceed as follows. We
start by choosing beforehand an exact solution

y(t) = e−t sin(t2),

with t0 = 0 and T = π ≈ 3.14159. Find y′ by hand, and use it to deduce the corre-
sponding expression for f(t, y). Run your implementation on a fixed time interval with
N = 100, 200, 400, 800, 1600 grid points, and plot the global error, defined by

EN := max
1≤k≤N−1

|y(t0 + h · k)− Yk|,

versus N in a log-log plot.3 Check that you obtain a line with the expected slope by com-
paring with the log-log plot of t−4. Perform the same computation with the explicit Euler
method given above and discuss your results.

Part II.
Extend your implementation of the above Runge-Kutta method for a system of two linear

first-oder ODEs

d

dt
y1(t) = f1(t, y1, y2),

d

dt
y2(t) = f2(t, y1, y2).

Next, consider an oscillating pendulum. Let θ(t) be the vertical angle of the pendulum
at time t. Its evolution in time satisfies

d2

dt2
θ +

g

L
sin(θ) = 0,

where g = 9.81m/s2 and L is the pendulum length in meters.

2Note: The file “forward euler.m” must be in the your current working directory for Matlab to be able
to find it. Use the command pwd (print working directory) to check your current directory, ls (list) to list
what’s in it, and cd directory name to change directory.

3log-log plots are used to find the relationship between two quantities related by a power function. For
example, if y = x2.3, then log(y) = 2.3 log(x), so if we plot log(x) vs. log(y), we should see a line with
slope 2.3. To plot a log-log plot in Matlab, just use loglog instead of plot. For example, you could use
loglog(1:N,e(1:N)) to plot your error.



• Write the above second-order ODE as a system of two first-order ODEs and use your
2 × 2 Runge-Kutta method to solve for θ(t), 0 ≤ t ≤ 10, with L = 1, θ(0) = π/4,
θ′(0) = 0, and N = 200, N = 2000, and N = 20, 000. Plot θ vs. t and discuss your
results. What happens if θ′(0) = 8?

• It is very common for people to use the linear approximation to this problem, given by

d2

dt2
θ +

g

L
θ = 0.

(This is sometimes called “the small-angle approximation.” Set L = 1 and θ′(0) = 0
and find the range of initial conditions θ(0) such that the linear model is accurate.


