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2. Solutions

(1) Problem 1:

Proof. (a) If A = 0, then cleary Ax = 0, ∀x ∈ Rn, so

�A� = max
x∈Rn,x�=0

�Ax�
�x� = 0.

Otherwise ∃ aij �= 0, aij ∈ A. Let ej = [0, · · · , 1, · · · , 0]T , then

�A� = max
x∈Rn,x�=0

�Ax�
�x� ≥ �Aej�

�ej�
> 0.

In summary, �A� ≥ 0, and �A� = 0 iff A = 0.
(b)

�αA� = max
x∈Rn,x�=0

�αAx�
�x� = max

x∈Rn,x�=0

|α|�Ax�
�x�

= |α| max
x∈Rn,x�=0

�Ax�
�x� = |α|�A�

(c)

�A + B� = max
x∈Rn,x�=0

�(A + B)x�
�x� = max

x∈Rn,x�=0

�Ax + Bx�
�x�

≤ max
x∈Rn,x�=0

�Ax� + �Bx�
�x�

≤ max
x∈Rn,x�=0

�Ax�
�x� + max

x∈Rn,x�=0

�Bx�
�x� = �A� + �B�

(d) According to the definition of the matrix norm, �A� = maxx∈Rn �Ax�/�x�
we have �Ax� ≤ �A��x�, ∀ x ∈ Rn. So, ∀ x ∈ Rn we have the following
inequalities:

�ABx� ≤ �A��Bx� ≤ �A��B��x�

Therefore, �AB� = max
x∈Rn,x�=0

�ABx�
�x� ≤ max

x∈Rn,x�=0

�A��B�x�
�x� = �A��B�.

�

(2) Problem 2:

Proof. A ∈ Rn×n is symmetric, so ∃ a real diagonal matrix Λ and an or-
thonormal matrix Q such that A = QΛQT , where the diagonal values of Λ are
A’s eigenvalues λi, i = 1, · · · , n and the columns of Q are the corresponding
eigenvectors.

According to Gerschgorin’s theorem, A’s eigenvalues are located in the
union of disks

di = {z ∈ C : |z − ai,i| ≤
�

j �=i

|ai,j|}, i = 1, · · · , n.
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Because A is positive and strictly row-wise diagonal dominant, so,

di = {z ∈ C : 0 < ai,i −
�

j �=i

ai,j ≤ z ≤
�

j

ai,j}, i = 1, · · · , n.

Therefore all A’s eigenvalues are positive, then ∀x ∈ Rn, x �= 0 we have,

xTAx = xTQΛQTx = yTΛy > 0, where y = QTx �= 0.

i.e. A is positive definite. �
(3) Problem 3: First, recall that the set of complex numbers σ(A) = {λ : det(A−

λI) = 0} is called spectrum of A.

Proof. Then, ∀ λ ∈ σ(A), we show that λk ∈ σ(Ak). Indeed, let Au = λu
with u �= 0.

Aku = λAk−1u = · · · = λku.

For any µ ∈ σ(Ak), we have Akv = µv, v �= 0. Since, v belong to the range of
A, so at least there exists one eigenvalue λ = µ1/k s.t.

Av = µ1/kv.

Thus, we always have that for any |µ| where Aku = µu, u �= 0, there exists
a |λ| = |µ|1/k where Au = λu, u �= 0; for any |λ| where Au = λu, u �= 0, there
exists a |µ| = |λk| = |λ|k where Aku = µu, u �= 0. So,

ρ(Ak) = max
µ∈σ(Ak)

|µ| ≡ max
λ∈σ(A)

|λ|k = ( max
λ∈σ(A)

|λ|)k = (ρ(A))k.

�
(4) Problem 4:

Proof. It follows from the obvious string of inequalities

�A�2 = max
�x�2=1

�Ax�2 = max
�x�2=1

(
n�

i=1

(
n�

j=1

aijxj)
2)1/2

≤ max
�x�2=1

(
n�

i=1

n�

j=1

a2ij

n�

j=1

x2
j)

1/2 Schwartz inequality

= (
n�

i=1

n�

j=1

a2ij)
1/2 ≤ (

n�

i=1

(
n�

j=1

|aij|)2)1/2

≤ (n(max
i

n�

j=1

|aij|)2)1/2 ≤ (n�A�2∞)1/2 =
√
n�A�∞

�
(5) Problem 5:

Proof. Assume the norm � · � satisfies the submultiplicative property, i.e.
�AB� ≤ �A��B� (subordinate matrix norms have this property).

�B−1 − A−1� = �A−1 − B−1� = �B−1(B − A)A−1�
≤ �B−1��B − A��A−1�
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A,B are nonsingular matrices, divide �B−1� on both sides,

�B−1 − A−1�
�B−1� ≤ �B − A��A−1� =

�B − A��A−1��A�
�A�

= cond(A)
�B − A�

�A�
�

(6) Problem 6:

Proof. For any symmetrix matrix A, all its eigenvalues are real.
According to Gerschgorin’s theorem, A’s eigenvalues are located in the

union of disks

di = {z ∈ C : |z − ai,i| ≤
�

j �=i

|ai,j|}, i = 1, · · · , n.

i.e.,

di = {z ∈ C : ai,i −
�

j �=i

|ai,j| ≤ z ≤ ai,i +
�

j �=i

|ai,j|}, i = 1, · · · , n.

Because A’s diagonal elements are positive and A is strictly diagonal dom-
inant, so,

ai,i −
�

j �=i |ai,j| = |ai,i| −
�

j �=i |ai,j| > 0

ai,i +
�

j �=i |ai,j| = |ai,i| +
�

j �=i |ai,j| > 0, i = 1, · · · , n.
So, all this disks are located at the right side of the y-axis in the complex

plane, so all eigenvales of A are positive. �

(7) Problem 7:

Proof. First possible solution:
(1) Consider an eigenvalue λ and its eigenvector ψ of the matrix AB, that is

ABψ = λψ. We do not know whether λ and ψ are real, so we assume that
they are complex. Recal that the inner product of two complex vectors ψ
and φ is defined as (φ, ψ) =

�
i φi ψ̄i, where ψ̄ is the complex conjugate

to ψ. Recall, that (φ, ψ) = (ψ, φ). For the inner product of the complex
vectors ABψ and ψ we get

ABψ = λψ ⇒ BABψ = λBψ, ⇒ (BABψ,ψ) = λ(Bψ, ψ).

Now using the symmetry of A and B we get

(BABψ,ψ) = (ψ,BABψ) = (BABψ,ψ),

which means that the complex number (BABψ,ψ) is equal to its complex
conjugate, i.e. the number is real. In the same way we prove that (Bψ, ψ)
is reas as well, from where we conclude that λ is real. Then we conclude
that ψ is real as well.

(2) If A and B are positive definite, then (Bψ, ψ) > 0 and (BABψ,ψ) > 0,
therefore from (BABψ,ψ) = λ(Bψ, ψ) it follows that λ > 0.
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Another possible solution (for those with more advanced knowlegde in linear
algebra):
(1) A is SPD, its square root exists A1/2 which is SPD, then

AB ∼ A−1/2ABA1/2 = A1/2BA1/2

Because both A1/2 and B are symmetric, then

(A1/2BA1/2)T = (A1/2)TBT (A1/2)T = A1/2BA1/2,

so A1/2BA1/2 is symmetric, and the eigenvalues of A1/2BA1/2 are real.
AB ∼ A1/2BA1/2, they have the same spectrum, so all eigenvalues of AB
are real.

(2) If B is also SPD, we can show that A1/2BA1/2 is SPD. The symmetry
is shown in (1). Now show positive definite. ∀x ∈ Rn, x �= 0 with
y = A1/2x �= 0 we have

(A1/2BA1/2x, x) = (BA1/2x,A1/2x) = (By, y) > 0.

So A1/2BA1/2 is SPD, and all its eigenvalues are positive. AB ∼ A1/2BA1/2,
they have the same spectrum, so all eigenvalues of AB are positive.

�

we show (b) as well
(8) Problem 8:

Proof. We prove (a). First we show that �A�∞ ≤ maxi

�
j |ai,j|. Indeed,

�A�∞ = max
�x�∞=1

�Ax�∞

= max
�x�∞=1

max
i

|
n�

j=1

aijxj|

≤ max
�x�∞=1

max
i

n�

j=1

|aij||xj|

≤ max
�x�∞=1

max
i

max
j

|xj|
n�

j=1

|aij|

= max
i

n�

j=1

|aij|

Next we show aslo that maxi

�
j |ai,j| ≤ �A�∞. Assume that for some integer

k ∈ [1, n] we have
n�

j=1

|akj| = max
i

n�

j=1

|aij|.

By choosing a vector y s.t.,

yj =

�
1, for ak,j ≥ 0;
−1, for ak,j < 0;
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Then, �y�∞ = 1 and

�A�∞ = sup
x∈Rn,�x�∞=1

�Ax�∞ ≥ �Ay�∞ =
�

j

|ak,j| = max
i

�

j

|ai,j|.

Thus, from the inequalities maxi

�
j |ai,j| ≤ �A�∞ ≤ maxi

�
j |ai,j|, it follows

that
�A�∞ = max

i

�

j

|ai,j|.

The inequality (b) is shown in a similar way. �


