2. Solutions

(1) <u>Problem 1:</u>

Proof. (a) If A = 0, then cleary $Ax = 0, \forall x \in \mathbb{R}^n$, so

$$||A|| = \max_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||}{||x||} = 0$$

Otherwise $\exists a_{ij} \neq 0, a_{ij} \in A$. Let $e_j = [0, \dots, 1, \dots, 0]^T$, then

$$|A|| = \max_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||}{||x||} \ge \frac{||Ae_j||}{||e_j||} > 0.$$

In summary, $||A|| \ge 0$, and ||A|| = 0 iff A = 0. (b)

$$\|\alpha A\| = \max_{x \in R^n, x \neq 0} \frac{\|\alpha Ax\|}{\|x\|} = \max_{x \in R^n, x \neq 0} \frac{|\alpha| \|Ax\|}{\|x\|}$$
$$= |\alpha| \max_{x \in R^n, x \neq 0} \frac{\|Ax\|}{\|x\|} = |\alpha| \|A\|$$

(c)

$$\begin{aligned} |A + B|| &= \max_{x \in R^n, x \neq 0} \frac{\|(A + B)x\|}{\|x\|} = \max_{x \in R^n, x \neq 0} \frac{\|Ax + Bx\|}{\|x\|} \\ &\leq \max_{x \in R^n, x \neq 0} \frac{\|Ax\| + \|Bx\|}{\|x\|} \\ &\leq \max_{x \in R^n, x \neq 0} \frac{\|Ax\|}{\|x\|} + \max_{x \in R^n, x \neq 0} \frac{\|Bx\|}{\|x\|} = \|A\| + \|B\| \end{aligned}$$

(d) According to the definition of the matrix norm, $||A|| = \max_{x \in \mathbb{R}^n} ||Ax|| / ||x||$ we have $||Ax|| \le ||A|| ||x||, \forall x \in \mathbb{R}^n$. So, $\forall x \in \mathbb{R}^n$ we have the following inequalities:

$$\|ABx\| \le \|A\| \|Bx\| \le \|A\| \|B\| \|x\|$$

Therefore, $\|AB\| = \max_{x \in R^n, x \neq 0} \frac{\|ABx\|}{\|x\|} \le \max_{x \in R^n, x \neq 0} \frac{\|A\| \|B\| x\|}{\|x\|} = \|A\| \|B\|.$

(2) <u>Problem 2:</u>

Proof. $A \in \mathbb{R}^{n \times n}$ is symmetric, so \exists a real diagonal matrix Λ and an orthonormal matrix Q such that $A = Q\Lambda Q^T$, where the diagonal values of Λ are A's eigenvalues λ_i , $i = 1, \dots, n$ and the columns of Q are the corresponding eigenvectors.

According to Gerschgorin's theorem, A's eigenvalues are located in the union of disks

$$d_i = \{z \in C : |z - a_{i,i}| \le \sum_{j \ne i} |a_{i,j}|\}, \quad i = 1, \cdots, n.$$

Because A is positive and strictly row-wise diagonal dominant, so,

$$d_i = \{ z \in C : 0 < a_{i,i} - \sum_{j \neq i} a_{i,j} \le z \le \sum_j a_{i,j} \}, \quad i = 1, \cdots, n.$$

Therefore all A's eigenvalues are positive, then $\forall x \in \mathbb{R}^n, x \neq 0$ we have,

$$x^{T}Ax = x^{T}Q\Lambda Q^{T}x = y^{T}\Lambda y > 0$$
, where $y = Q^{T}x \neq 0$.

i.e. A is positive definite.

(3) <u>Problem 3:</u> First, recall that the set of complex numbers $\sigma(A) = \{\lambda : det(A - \lambda I) = 0\}$ is called spectrum of A.

Proof. Then, $\forall \lambda \in \sigma(A)$, we show that $\lambda^k \in \sigma(A^k)$. Indeed, let $Au = \lambda u$ with $u \neq 0$.

$$A^k u = \lambda A^{k-1} u = \dots = \lambda^k u.$$

For any $\mu \in \sigma(A^k)$, we have $A^k v = \mu v$, $v \neq 0$. Since, v belong to the range of A, so at least there exists one eigenvalue $\lambda = \mu^{1/k}$ s.t.

$$Av = \mu^{1/k}v.$$

Thus, we always have that for any $|\mu|$ where $A^k u = \mu u$, $u \neq 0$, there exists a $|\lambda| = |\mu|^{1/k}$ where $Au = \lambda u$, $u \neq 0$; for any $|\lambda|$ where $Au = \lambda u$, $u \neq 0$, there exists a $|\mu| = |\lambda^k| = |\lambda|^k$ where $A^k u = \mu u$, $u \neq 0$. So,

$$\rho(A^k) = \max_{\mu \in \sigma(A^k)} |\mu| \equiv \max_{\lambda \in \sigma(A)} |\lambda|^k = (\max_{\lambda \in \sigma(A)} |\lambda|)^k = (\rho(A))^k.$$

(4) <u>Problem 4:</u>

Proof. It follows from the obvious string of inequalities

$$\begin{split} \|A\|_{2} &= \max_{\|x\|_{2}=1} \|Ax\|_{2} = \max_{\|x\|_{2}=1} (\sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij}x_{j})^{2})^{1/2} \\ &\leq \max_{\|x\|_{2}=1} (\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} \sum_{j=1}^{n} x_{j}^{2})^{1/2} \quad \text{Schwartz inequality} \\ &= (\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2})^{1/2} \leq (\sum_{i=1}^{n} (\sum_{j=1}^{n} |a_{ij}|)^{2})^{1/2} \\ &\leq (n(\max_{i} \sum_{j=1}^{n} |a_{ij}|)^{2})^{1/2} \leq (n\|A\|_{\infty}^{2})^{1/2} = \sqrt{n}\|A\|_{\infty} \end{split}$$

(5) <u>Problem 5:</u>

Proof. Assume the norm $\|\cdot\|$ satisfies the submultiplicative property, i.e. $\|AB\| \leq \|A\| \|B\|$ (subordinate matrix norms have this property).

$$||B^{-1} - A^{-1}|| = ||A^{-1} - B^{-1}|| = ||B^{-1}(B - A)A^{-1}||$$

$$\leq ||B^{-1}|| ||B - A|| ||A^{-1}||$$

A, B are nonsingular matrices, divide $||B^{-1}||$ on both sides,

$$\frac{\|B^{-1} - A^{-1}\|}{\|B^{-1}\|} \le \|B - A\| \|A^{-1}\| = \frac{\|B - A\| \|A^{-1}\| \|A\|}{\|A\|}$$
$$= \operatorname{cond}(A) \frac{\|B - A\|}{\|A\|}$$

(6) <u>Problem 6:</u>

Proof. For any symmetrix matrix A, all its eigenvalues are real.

According to Gerschgorin's theorem, A's eigenvalues are located in the union of disks

$$d_i = \{ z \in C : |z - a_{i,i}| \le \sum_{j \ne i} |a_{i,j}| \}, \quad i = 1, \cdots, n.$$

i.e.,

$$d_i = \{ z \in C : a_{i,i} - \sum_{j \neq i} |a_{i,j}| \le z \le a_{i,i} + \sum_{j \neq i} |a_{i,j}| \}, \quad i = 1, \cdots, n.$$

Because A's diagonal elements are positive and A is strictly diagonal dominant, so,

$$a_{i,i} - \sum_{j \neq i} |a_{i,j}| = |a_{i,i}| - \sum_{j \neq i} |a_{i,j}| > 0$$
$$a_{i,i} + \sum_{j \neq i} |a_{i,j}| = |a_{i,i}| + \sum_{j \neq i} |a_{i,j}| > 0, \quad i = 1, \cdots, n.$$

So, all this disks are located at the right side of the y-axis in the complex plane, so all eigenvales of A are positive. \Box

(7) <u>Problem 7:</u>

Proof. First possible solution:

(1) Consider an eigenvalue λ and its eigenvector ψ of the matrix AB, that is $AB\psi = \lambda\psi$. We do not know whether λ and ψ are real, so we assume that they are complex. Recal that the inner product of two complex vectors ψ and ϕ is defined as $(\phi, \psi) = \sum_i \phi_i \bar{\psi}_i$, where $\bar{\psi}$ is the complex conjugate to ψ . Recall, that $(\phi, \psi) = (\psi, \phi)$. For the inner product of the complex vectors $AB\psi$ and ψ we get

$$AB\psi = \lambda\psi \quad \Rightarrow BAB\psi = \lambda B\psi, \quad \Rightarrow (BAB\psi, \psi) = \lambda(B\psi, \psi).$$

Now using the symmetry of A and B we get

$$(BAB\psi,\psi) = (\psi, BAB\psi) = (BAB\psi,\psi),$$

which means that the complex number $(BAB\psi, \psi)$ is equal to its complex conjugate, i.e. the number is real. In the same way we prove that $(B\psi, \psi)$ is reas as well, from where we conclude that λ is real. Then we conclude that ψ is real as well.

(2) If A and B are positive definite, then $(B\psi, \psi) > 0$ and $(BAB\psi, \psi) > 0$, therefore from $(BAB\psi, \psi) = \lambda(B\psi, \psi)$ it follows that $\lambda > 0$. Another possible solution (for those with more advanced knowlegde in linear algebra):

(1) A is SPD, its square root exists $A^{1/2}$ which is SPD, then

$$AB \sim A^{-1/2}ABA^{1/2} = A^{1/2}BA^{1/2}$$

Because both $A^{1/2}$ and B are symmetric, then

$$(A^{1/2}BA^{1/2})^T = (A^{1/2})^T B^T (A^{1/2})^T = A^{1/2}BA^{1/2},$$

so $A^{1/2}BA^{1/2}$ is symmetric, and the eigenvalues of $A^{1/2}BA^{1/2}$ are real. $AB \sim A^{1/2}BA^{1/2}$, they have the same spectrum, so all eigenvalues of AB are real.

(2) If B is also SPD, we can show that $A^{1/2}BA^{1/2}$ is SPD. The symmetry is shown in (1). Now show positive definite. $\forall x \in \mathbb{R}^n, x \neq 0$ with $y = A^{1/2}x \neq 0$ we have

$$(A^{1/2}BA^{1/2}x,x) = (BA^{1/2}x,A^{1/2}x) = (By,y) > 0$$

So $A^{1/2}BA^{1/2}$ is SPD, and all its eigenvalues are positive. $AB \sim A^{1/2}BA^{1/2}$, they have the same spectrum, so all eigenvalues of AB are positive.

we show (b) as well

(8) <u>Problem 8:</u>

Proof. We prove (a). First we show that $||A||_{\infty} \leq \max_{i} \sum_{j} |a_{i,j}|$. Indeed,

$$|A||_{\infty} = \max_{\|x\|_{\infty}=1} \|Ax\|_{\infty}$$

=
$$\max_{\|x\|_{\infty}=1} \max_{i} |\sum_{j=1}^{n} a_{ij}x_{j}|$$

$$\leq \max_{\|x\|_{\infty}=1} \max_{i} \sum_{j=1}^{n} |a_{ij}| |x_{j}|$$

$$\leq \max_{\|x\|_{\infty}=1} \max_{i} \max_{j} \max_{j} |x_{j}| \sum_{j=1}^{n} |a_{ij}|$$

=
$$\max_{i} \sum_{j=1}^{n} |a_{ij}|$$

Next we show allo that $\max_i \sum_j |a_{i,j}| \le ||A||_{\infty}$. Assume that for some integer $k \in [1, n]$ we have

$$\sum_{j=1}^{n} |a_{kj}| = \max_{i} \sum_{j=1}^{n} |a_{ij}|.$$

By choosing a vector y s.t.,

$$y_j = \begin{cases} 1, \text{ for } a_{k,j} \ge 0; \\ -1, \text{ for } a_{k,j} < 0; \end{cases}$$

Then, $\|y\|_{\infty} = 1$ and

$$||A||_{\infty} = \sup_{x \in \mathcal{R}^n, ||x||_{\infty} = 1} ||Ax||_{\infty} \ge ||Ay||_{\infty} = \sum_{j} |a_{k,j}| = \max_{i} \sum_{j} |a_{i,j}|.$$

Thus, from the inequalities $\max_i \sum_j |a_{i,j}| \le ||A||_{\infty} \le \max_i \sum_j |a_{i,j}|$, it follows that

$$||A||_{\infty} = \max_{i} \sum_{j} |a_{i,j}|.$$

The inequality (b) is shown in a similar way.