2. SOLUTIONS

 (1) Problem 1:

Proof. (a) If $A = 0$, then cleary $Ax = 0, \forall x \in R^n$, so

$$
||A|| = \max_{x \in R^n, x \neq 0} \frac{||Ax||}{||x||} = 0
$$

Otherwise $\exists a_{ij} \neq 0, a_{ij} \in A$. Let $e_j = [0, \dots, 1, \dots, 0]^T$, then

$$
A\| = \max_{x \in R^n, x \neq 0} \frac{\|Ax\|}{\|x\|} \ge \frac{\|Ae_j\|}{\|e_j\|} > 0.
$$

In summary, $||A|| \ge 0$, and $||A|| = 0$ iff $A = 0$. (b)

 \parallel

$$
\|\alpha A\| = \max_{x \in R^n, x \neq 0} \frac{\|\alpha Ax\|}{\|x\|} = \max_{x \in R^n, x \neq 0} \frac{|\alpha| \|Ax\|}{\|x\|}
$$

$$
= |\alpha| \max_{x \in R^n, x \neq 0} \frac{\|Ax\|}{\|x\|} = |\alpha| \|A\|
$$

 (c)

$$
|A + B|| = \max_{x \in R^n, x \neq 0} \frac{\|(A + B)x\|}{\|x\|} = \max_{x \in R^n, x \neq 0} \frac{\|Ax + Bx\|}{\|x\|}
$$

$$
\leq \max_{x \in R^n, x \neq 0} \frac{\|Ax\| + \|Bx\|}{\|x\|}
$$

$$
\leq \max_{x \in R^n, x \neq 0} \frac{\|Ax\|}{\|x\|} + \max_{x \in R^n, x \neq 0} \frac{\|Bx\|}{\|x\|} = \|A\| + \|B\|
$$

(d) According to the definition of the matrix norm, $||A|| = \max_{x \in R^n} ||Ax|| / ||x||$ we have $||Ax|| \le ||A||||x||$, $\forall x \in R^n$. So, $\forall x \in R^n$ we have the following inequalities:

$$
||ABx|| \le ||A|| ||Bx|| \le ||A|| ||B|| ||x||
$$

Therefore, $||AB|| = \max_{x \in R^n, x \neq 0} \frac{||ABx||}{||x||} \le \max_{x \in R^n, x \neq 0} \frac{||A|| ||B||x||}{||x||} = ||A|| ||B||.$

 (2) Problem 2:

Proof. $A \in R^{n \times n}$ is symmetric, so \exists a real diagonal matrix Λ and an orthonormal matrix Q such that $A = Q\Lambda Q^T$, where the diagonal values of Λ are A's eigenvalues λ_i , $i = 1, \dots, n$ and the columns of Q are the corresponding eigenvectors.

According to Gerschgorin's theorem, A's eigenvalues are located in the union of disks

$$
d_i = \{ z \in C : |z - a_{i,i}| \le \sum_{j \ne i} |a_{i,j}|\}, \quad i = 1, \dots, n.
$$

Because A is positive and strictly row-wise diagonal dominant, so,

$$
d_i = \{ z \in C : 0 < a_{i,i} - \sum_{j \neq i} a_{i,j} \leq z \leq \sum_j a_{i,j} \}, \quad i = 1, \cdots, n.
$$

Therefore all A's eigenvalues are positive, then $\forall x \in \mathbb{R}^n$, $x \neq 0$ we have,

$$
x^T A x = x^T Q \Lambda Q^T x = y^T \Lambda y > 0, \text{ where } y = Q^T x \neq 0.
$$

i.e. A is positive definite. \Box

(3) Problem 3: First, recall that the set of complex numbers $\sigma(A) = \{\lambda : \det(A - \lambda)\}$ λI) = 0} is called spectrum of A.

Proof. Then, $\forall \lambda \in \sigma(A)$, we show that $\lambda^k \in \sigma(A^k)$. Indeed, let $Au = \lambda u$ with $u \neq 0$.

$$
A^k u = \lambda A^{k-1} u = \dots = \lambda^k u.
$$

For any $\mu \in \sigma(A^k)$, we have $A^k v = \mu v$, $v \neq 0$. Since, v belong to the range of A, so at least there exists one eigenvalue $\lambda = \mu^{1/k}$ s.t.

$$
Av = \mu^{1/k}v.
$$

Thus, we always have that for any $|\mu|$ where $A^k u = \mu u$, $u \neq 0$, there exists $|a| |\lambda| = |\mu|^{1/k}$ where $Au = \lambda u$, $u \neq 0$; for any $|\lambda|$ where $Au = \lambda u$, $u \neq 0$, there exists a $|\mu| = |\lambda^k| = |\lambda|^k$ where $A^k u = \mu u, u \neq 0$. So,

$$
\rho(A^k) = \max_{\mu \in \sigma(A^k)} |\mu| \equiv \max_{\lambda \in \sigma(A)} |\lambda|^k = (\max_{\lambda \in \sigma(A)} |\lambda|)^k = (\rho(A))^k.
$$

(4) Problem 4:

Proof. It follows from the obvious string of inequalities

$$
||A||_2 = \max_{||x||_2=1} ||Ax||_2 = \max_{||x||_2=1} \left(\sum_{i=1}^n (\sum_{j=1}^n a_{ij} x_j)^2 \right)^{1/2}
$$

\n
$$
\leq \max_{||x||_2=1} \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 \sum_{j=1}^n x_j^2 \right)^{1/2}
$$
 Schwartz inequality
\n
$$
= (\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2)^{1/2} \leq (\sum_{i=1}^n (\sum_{j=1}^n |a_{ij}|)^2)^{1/2}
$$

\n
$$
\leq (n(\max_{i} \sum_{j=1}^n |a_{ij}|)^2)^{1/2} \leq (n||A||_{\infty}^2)^{1/2} = \sqrt{n}||A||_{\infty}
$$

(5) Problem 5:

Proof. Assume the norm $\|\cdot\|$ satisfies the submultiplicative property, i.e. $||AB|| \le ||A|| ||B||$ (subordinate matrix norms have this property).

$$
||B^{-1} - A^{-1}|| = ||A^{-1} - B^{-1}|| = ||B^{-1}(B - A)A^{-1}||
$$

\n
$$
\le ||B^{-1}|| ||B - A|| ||A^{-1}||
$$

 \Box

 \Box

A, B are nonsingular matrices, divide $||B^{-1}||$ on both sides,

$$
\frac{\|B^{-1} - A^{-1}\|}{\|B^{-1}\|} \le \|B - A\| \|A^{-1}\| = \frac{\|B - A\| \|A^{-1}\| \|A\|}{\|A\|}
$$

=
$$
cond(A) \frac{\|B - A\|}{\|A\|}
$$

 \Box

(6) Problem 6:

Proof. For any symmetrix matrix A, all its eigenvalues are real.

According to Gerschgorin's theorem, A's eigenvalues are located in the union of disks

$$
d_i = \{ z \in C : |z - a_{i,i}| \le \sum_{j \neq i} |a_{i,j}|\}, \quad i = 1, \dots, n.
$$

i.e.,

$$
d_i = \{ z \in C : a_{i,i} - \sum_{j \neq i} |a_{i,j}| \leq z \leq a_{i,i} + \sum_{j \neq i} |a_{i,j}| \}, \quad i = 1, \cdots, n.
$$

Because A's diagonal elements are positive and A is strictly diagonal dominant, so,

$$
a_{i,i} - \sum_{j \neq i} |a_{i,j}| = |a_{i,i}| - \sum_{j \neq i} |a_{i,j}| > 0
$$

$$
a_{i,i} + \sum_{j \neq i} |a_{i,j}| = |a_{i,i}| + \sum_{j \neq i} |a_{i,j}| > 0, \quad i = 1, \dots, n.
$$

So, all this disks are located at the right side of the y -axis in the complex plane, so all eigenvales of A are positive. \Box

(7) Problem 7:

Proof. First possible solution:

(1) Consider an eigenvalue λ and its eigenvector ψ of the matrix AB, that is $AB\psi = \lambda \psi$. We do not know whether λ and ψ are real, so we assume that they are complex. Recal that the inner product of two complex vectors ψ and ϕ is defined as $(\phi, \psi) = \sum_i \phi_i \bar{\psi}_i$, where $\bar{\psi}$ is the complex conjugate to ψ . Recall, that $(\phi, \psi) = (\psi, \phi)$. For the inner product of the complex vectors $AB\psi$ and ψ we get

$$
AB\psi = \lambda \psi \Rightarrow BAB\psi = \lambda B\psi, \Rightarrow (BAB\psi, \psi) = \lambda (B\psi, \psi).
$$

Now using the symmetry of A and B we get

$$
(BAB\psi,\psi)=(\psi,BAB\psi)=(BAB\psi,\psi),
$$

which means that the complex number $(BAB\psi, \psi)$ is equal to its complex conjugate, i.e. the number is real. In the same way we prove that $(B\psi, \psi)$ is reas as well, from where we conclude that λ is real. Then we conclude that ψ is real as well.

(2) If A and B are positive definite, then $(B\psi, \psi) > 0$ and $(BAB\psi, \psi) > 0$, therefore from $(BAB\psi, \psi) = \lambda (B\psi, \psi)$ it follows that $\lambda > 0$.

Another possible solution (for those with more advanced knowlegde in linear algebra):

 (1) A is SPD, its square root exists $A^{1/2}$ which is SPD, then

$$
AB \sim A^{-1/2} A B A^{1/2} = A^{1/2} B A^{1/2}
$$

Because both $A^{1/2}$ and B are symmetric, then

$$
(A^{1/2}BA^{1/2})^T = (A^{1/2})^T B^T (A^{1/2})^T = A^{1/2}BA^{1/2},
$$

so $A^{1/2}BA^{1/2}$ is symmetric, and the eigenvalues of $A^{1/2}BA^{1/2}$ are real. $AB \sim A^{1/2}BA^{1/2}$, they have the same spectrum, so all eigenvalues of AB are real.

(2) If B is also SPD, we can show that $A^{1/2}BA^{1/2}$ is SPD. The symmetry is shown in (1). Now show positive definite. $\forall x \in R^n, x \neq 0$ with $y = A^{1/2}x \neq 0$ we have

$$
(A^{1/2}BA^{1/2}x, x) = (BA^{1/2}x, A^{1/2}x) = (By, y) > 0.
$$

So $A^{1/2}BA^{1/2}$ is SPD, and all its eigenvalues are positive. $AB \sim A^{1/2}BA^{1/2}$, they have the same spectrum, so all eigenvalues of AB are positive.

 \Box

we show (b) as well

(8) Problem 8:

Proof. We prove (a). First we show that $||A||_{\infty} \leq \max_{i} \sum_{j} |a_{i,j}|$. Indeed,

$$
||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty}
$$

\n
$$
= \max_{||x||_{\infty}=1} \max_{i} |\sum_{j=1}^{n} a_{ij}x_{j}|
$$

\n
$$
\leq \max_{||x||_{\infty}=1} \max_{i} \sum_{j=1}^{n} |a_{ij}| |x_{j}|
$$

\n
$$
\leq \max_{||x||_{\infty}=1} \max_{i} \max_{j} |x_{j}| \sum_{j=1}^{n} |a_{ij}|
$$

\n
$$
= \max_{i} \sum_{j=1}^{n} |a_{ij}|
$$

Next we show as o that $\max_i \sum_j |a_{i,j}| \le ||A||_{\infty}$. Assume that for some integer $k \in [1, n]$ we have

$$
\sum_{j=1}^{n} |a_{kj}| = \max_{i} \sum_{j=1}^{n} |a_{ij}|.
$$

By choosing a vector y s.t.,

$$
y_j = \begin{cases} 1, & \text{for } a_{k,j} \ge 0; \\ -1, & \text{for } a_{k,j} < 0; \end{cases}
$$

Then, $\|y\|_\infty=1$ and

$$
||A||_{\infty} = \sup_{x \in \mathcal{R}^n, ||x||_{\infty} = 1} ||Ax||_{\infty} \ge ||Ay||_{\infty} = \sum_{j} |a_{k,j}| = \max_{i} \sum_{j} |a_{i,j}|.
$$

Thus, from the inequalities $\max_i \sum_j |a_{i,j}| \le ||A||_{\infty} \le \max_i \sum_j |a_{i,j}|$, it follows that

$$
||A||_{\infty} = \max_{i} \sum_{j} |a_{i,j}|.
$$

The inequality (b) is shown in a similar way.

 \Box