HOMEWORK 3

DUE: MONDAY, 21 OCTOBER 2013 INSTRUCTOR: DR. ADAM LARIOS

Solve the problems below, worth 20 points each, for a total of 100 points. Fully justify your work.

(1) Derive an expression for the zeros of the minimizing polynomial

$$
P_m(x) = \frac{T_m(L(x))}{T_m(L(0))}
$$

Here T_m is the mth Chebyshev polynomial and

$$
L(\lambda) = -1 + \frac{2}{\lambda_M - \lambda_0} (\lambda - \lambda_0)
$$

(Note that there is no matrix involved in this problem, but on our applications, this polynomial was important for a matrix with smallest eigenvalue λ_0 and large eigenvalue λ_M .)

(2) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite. Show that, for any polynomial $P(\cdot)$,

$$
||P(A)||_A = \rho(P(A))
$$

for any polynomial P . (Hint: use the definition of the matrix norm and expand everything out in terms of the $(·, ·)$ -orthonormal eigenvectors of A).

(3) In many examples, we have seen the $n \times n$ matrix

$$
D = \begin{pmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 \\ 0 & 0 & 0 & \cdots & -1 & 2 \end{pmatrix}
$$

Show that D has eigenvalues $\lambda_j = 4 \sin^2 \left(\frac{\pi j}{2(n+1)} \right)$ corresponding to eigenvectors ψ_j , whose k^{th} component is given by

$$
(\psi_j)_k = \sin\left(\frac{\pi jk}{n+1}\right).
$$

(Hint: Use a basic trig identities.) In the case $n = 100$, plot the smallest eigenvector and the largest eigenvector (i.e., make the xaxis the component number, and the y-axis the value of the k^{th} component).

(4) Let A be an SPD matrix and consider the problem $A\mathbf{x} = \mathbf{b}$. Suppose instead of minimizing the quadratic functional $q(\mathbf{x}) = (A\mathbf{x}, \mathbf{x})-2(\mathbf{b}, \mathbf{x})$ to solve this problem, we instead tried to minimize

$$
J(\mathbf{x}) = \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||_{L^2}^2
$$

where $\|\cdot\|_{L^2}$ is the standard Euclidean norm. What can you say about such an approach? Will this yield a useful method for solving $A\mathbf{x} = \mathbf{b}$?

(5) Given a linearly-independent set of vectors $\{r_0, r_1, \ldots, r_k\}$ and an SPD matrix A, show that one can construct an A-orthonormal set of vectors $\{ \mathbf{p}_0, \mathbf{p}_1, \ldots, \mathbf{p}_k \}$ such that

 $span({\bf r}_0, {\bf r}_1, \ldots, {\bf r}_k) = span({\bf p}_0, {\bf p}_1, \ldots, {\bf p}_k).$

Recall that being A-orthonormal means that $(A\mathbf{p}_i, \mathbf{p}_j) = \delta_{ij}$. (Hint: Start by choosing \mathbf{p}_0 as a multiple of \mathbf{r}_0 . Then assume all \mathbf{p}_m have been chosen, and show how to construct \mathbf{p}_{m+1} .)