6 Method of characteristics

Question 80: (a) Show that the PDE $u_y = 0$ in the half plane $\{x > 0\}$ has no solution which is \mathcal{C}^1 and satisfies the boundary condition $u(y^2, y) = y$.

Solution: The PDE implies that $u(x, y) = \phi(x)$ where ϕ is any C^1 function. The boundary condition implies $\phi(1) = u(1, -1) = -1$ and $\phi(1) = u(1, 1) = 1$, which is impossible. The reason for this happening is that the characteristics lines (x = c) cross the boundary curve (the parabola of equation $x = y^2$) twice.

(b) Find the C^1 function that solves the above PDE in the quadrant $\{x > 0, 0 > y\}$ (beware the sign of y).

Solution: The PDE implies $u(x, y) = \phi(x)$ and the boundary condition implies $\phi(y^2) = u(y^2, y) = y = -|y|$ since y is negative. Then $u(x, y) = \phi(x) = -\sqrt{x}$.

Question 81: Let $\Omega = \{x > 0, y > 0\}$ be the first quadrant of the plane. Let Γ be the line defined by the following parameterization $\Gamma = \{x = s, y = 1/s, s > 0\}$. Solve the following PDE:

$$xu_x + 2yu_y = 0, \quad \text{in } \Omega,$$

 $u(x,y) = x \quad \text{on } \Gamma.$

Solution: The characteristics are $X(\tau, s) = se^{\tau}$, $Y(\tau, s) = s^{-1}e^{2\tau}$. Upon setting $u(X(\tau, s), Y(\tau, s)) = w(\tau, s)$, we obtain $w(\tau, s) = w(0, s)$. Then the boundary condition implies $w(0, s) = u(s, \frac{1}{s}) = s$. In other words $u(x, y) = (x^2y^{-1})^{1/3}$.

Question 82: (a) Solve the quasi-linear PDE $3u^2u_x + 3u^2u_y = 1$ in the plane by using the method of Lagrange (that is, show that u solves the nonlinear equation c(a(x, y, u), b(x, y, u)) = 0 where c is an arbitrary function and a, b are polynomials of degree 3 that you must find.)

Solution: The auxiliary equation is $3z^2\phi_x + 3z^2\phi_y + \phi_z = 0$. Define the plane $\Gamma = \{x = s, y = s', z = 0\}$ and enforce $\phi(x, y, z) = \phi_0(s, s')$ on Γ , where ϕ_0 is an arbitrary C^1 function. The characteristics are $X(\tau, s, s') = \tau^3 + s \ Y(\tau, s, s') = \tau^3 + s', \ Z(\tau, s, s') = \tau$. Then $\phi(x, y, z) = \phi_0(s, s')$ where $s = x - z^3$ and $s' = y - z^3$. Then $\phi(x, y, z) = \phi_0(x - z^3, y - z^3)$. Hence, u solves $\phi_0(x - u^3, y - u^3) = 0$.

(b) Find a solution to the above PDE that satisfies the boundary condition u(x, 2x) = 1.

Solution: We want $\phi_0(x-1, 2x-1) = 0$. Take $\phi_0(\alpha, \beta) = 2\alpha - \beta + 1$. Then $2(x-u^3) - (y-u^3) + 1 = 0$, that is $u(x, y) = (1 + 2x - y)^{1/3}$.

Question 83: We want to solve the following PDE:

$$\partial_t w + 3\partial_x w = 0, \quad x > -t, \ t > 0$$

 $w(x,t) = w_{\Gamma}(x,t), \text{ for all } (x,t) \in \Gamma \text{ where}$
 $\Gamma = \{(x,t) \in \mathbb{R}^2 \text{ s.t. } x = -t, \ x < 0\} \cup \{(x,t) \in \mathbb{R}^2 \text{ s.t. } t = 0, \ x \ge 0\}$
and w_{Γ} is a given function.

(a) Draw a picture of the domain Ω where the PDE must be solved, of the boundary Γ , and of the characteristics.

Solution:

(b) Define a one-to-one parametric representation of the boundary Γ .

Solution: For negative s we set $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = -s$; clearly we have $x_{\Gamma}(s) = -t_{\Gamma}(s)$ for all s < 0. For positive s we set $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$. The map $\mathbb{R} \in s \mapsto (x_{\Gamma}(s), t_{\Gamma}(s)) \in \Gamma$ is one-t-one.

(c) Give a parametric representation of the characteristics associated with the PDE.

Solution: (i) We use t and s to parameterize the characteristics. The characteristics are defined by

$$\partial_t X(t,s) = 3$$
, with $x(t_1 \Gamma(s), s) = x_{\Gamma}(s)$.

This yields the following parametric representation of the characteristics

$$X(t,s) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s)$$

where $t \ge 0$ and $s \in (-\infty, +\infty)$.

(d) Give an implicit parametric representation of the solution to the PDE.

Solution: (i) Now we set $\phi(t,s) = w(X(t,s), t(t,s))$ and we insert this ansatz in the equation. This gives $\frac{d\phi}{dt}(t,s) = 0$, i.e., $\phi(t,s)$ does not depend on t. In other words

 $w(X(t,s), t(t,s)) = \phi(t,s) = \phi(0,s) = w(x(0,s), t(0,s)) = w_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))$

A parametric representation of the solution is given by

$$X(t,s) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s),$$

$$w(X(t,s), t(t,s)) = w_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))$$

(e) Give an explicit representation of the solution.

Solution: (i) We have to find the inverse map $(x,t) \mapsto (t,s)$. Clearly $x - 3t = x_{\Gamma}(s) - 3t_{\Gamma}(s)$. Then, there are two cases depending on the sign of s.

case 1: If s < 0, then $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = -s$. That means x - 3t = 4s, which in turns implies $s = \frac{1}{4}(x - 3t)$. Then

$$w(x,t) = w_{\Gamma}(\frac{1}{4}(x-3t), -\frac{1}{4}(x-3t)), \text{ if } x - 3t < 0.$$

case 2: If $s \ge 0$, then $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$. That means x - 3t = s. Then

 $w(x,t) = w_{\Gamma}(x - 3t, 0), \quad \text{if } x - 3t \ge 0.$

Note that the explicit representation of the solution does not depend on the choice of the parameterization.

Question 84: Solve the following PDE by the method of characteristics:

 $\partial_t w + 3\partial_x w = 0, \quad x > 0, \ t > 0$ $w(x, 0) = f(x), \quad x > 0, \text{ and } w(0, t) = h(t), \quad t > 0.$ **Solution:** First we parameterize the boundary of Ω by setting $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s); s \in \mathbb{R}\}$ with

$$x_{\Gamma}(s) = \quad \begin{cases} 0 \quad \text{if } s < 0, \\ s, \quad \text{if } s \ge 0. \end{cases} \quad \text{and} \quad \quad t_{\Gamma}(s) = \quad \begin{cases} -s \quad \text{if } s < 0, \\ 0, \quad \text{if } s \ge 0. \end{cases}$$

The we define the characteristics by

$$\partial_t X(s,t) = 3$$
, with $X(s,t_{\Gamma}(s)) = x_{\Gamma}(s)$.

The general solution is $X(s,t) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s)$. Now we make the change of variable $\phi(s,t) = w(X(s,t),t)$ and we compute $\partial_t \phi(s,t)$,

$$\partial_t \phi(s,t) = \partial_t w(X(s,t),t) + \partial_x w(X(s,t),t) \\ \partial_t X(s,t) = \partial_t w(X(s,t),t) + 3\partial_x w(X(s,t),t) = 0.$$

This means that $\phi(s,t) = \phi(s,t_{\Gamma}(s))$. In other words

$$w(X(s,t),t) = w(X(s,t_{\Gamma}(s)),t_{\Gamma}(s)) = w(x_{\Gamma}(s),t_{\Gamma}(s)).$$

<u>Case 1:</u> If s < 0, then $X(s,t) = 3(t - t_{\Gamma}(s))$. This implies $t_{\Gamma}(s) = t - X/3$. The condition s < 0 and the definition $t_{\Gamma}(s) = -s$ imply $t - X/3 \ge 0$. Moreover we have

$$w(X,t) = w(0,t_{\Gamma}(s)) = h(t_{\Gamma}(s)).$$

In conlusion

$$w(X,t) = h(t - X/3),$$
 if $3t > X.$

<u>Case 2:</u> If $s \ge 0$, then $X(s,t) = 3t + x_{\Gamma}(s)$. This implies $x_{\Gamma}(s) = X - 3t$. The condition $s \ge 0$ and the definition $x_{\Gamma}(s) = s$ imply $X - 3t \ge 0$. Moreover we have

$$w(X,t) = w(x_{\Gamma}(s),0) = f(x_{\Gamma}(s)).$$

In conlusion

$$w(X,t) = f(X - 3t), \qquad \text{if} \qquad X \ge 3t.$$

Question 85: Let $\Omega = \{(x,t) \in \mathbb{R}^2; x + 2t \ge 0\}$. Solve the following PDE in explicit form with the method of characteristics:

$$\partial_t u(x,t) + 3\partial_x u(x,t) = u(x,t), \text{ in } \Omega, \text{ and } u(x,t) = 1 + \sin(x), \text{ if } x + 2t = 0.$$

Solution: (i) First we parameterize the boundary of Ω by setting $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s); s \in \mathbb{R}\}$ with $x_{\Gamma}(s) = -2s$ and $t_{\Gamma}(s) = s$. This choice implies

$$u(x_{\Gamma}(s), t_{\Gamma}(s)) := u_{\Gamma}(s) := 1 + \sin(-2s).$$

(ii) We compute the characteristics

$$\partial_t X(t,s) = 3, \quad X(t_{\Gamma}(s),s) = x_{\Gamma}(s).$$

The solution is $X(t,s) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s)$.

(iii) Set $\Phi(t,s) := u(X(t,s),t)$ and compute $\partial_t \Phi(t,s)$. This gives

$$\begin{aligned} \partial_t \Phi(t,s) &= \partial_t u(X(t,s),t) + \partial_x u(X(t,s),t) \partial_t X(t,s) \\ &= \partial_t u(X(t,s),t) + 3\partial_x u(X(t,s),t) = u(X(t,s),t) = \Phi(t,s). \end{aligned}$$

The solution is $\Phi(t,s) = \Phi(t_{\Gamma}(s),s)e^{t-t_{\Gamma}(s)}$.

(iv) The implicit representation of the solution is

$$X(t,s) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s)$$
 $u(X(t,s)) = u_{\Gamma}(s)e^{t - t_{\Gamma}(s)}.$

(v) The explicit representation is obtained by using the definitions of $-t_{\Gamma}(s)$, $x_{\Gamma}(s)$ and $u_{\Gamma}(s)$.

$$X(s,t) = 3(t-s) - 2s = 3t - 5s,$$

which gives

$$s = \frac{1}{5}(3t - X).$$

The solution is

$$u(x,t) = (1 + \sin(\frac{2}{5}(x - 3t)))e^{t - \frac{1}{5}(3t - x)}$$
$$= (1 + \sin(\frac{2(x - 3t)}{5}))e^{\frac{x + 2t}{5}}.$$

Question 86: Let $\Omega = \{(x,t) \in \mathbb{R}^2; x \ge 0, t \ge 0\}$. Solve the following PDE in explicit form

$$\partial_t u(x,t) + t \partial_x u(x,t) = 2 u(x,t), \quad \text{in } \Omega, \quad \text{and} \quad u(0,t) = t, \ u(x,0) = x$$

Solution: (i) First we parameterize the boundary of Ω by setting $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s); s \in \mathbb{R}\}$ with $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$ if s > 0 and $x_{\Gamma}(s) = 0$ and $t_{\Gamma}(s) = -s$ if $s \le 0$. This choice implies

$$u(x_{\Gamma}(s), t_{\Gamma}(s)) := u_{\Gamma}(s) := \begin{cases} s & \text{if } s > 0\\ -s & \text{if } s \le 0 \end{cases}.$$

(ii) We compute the characteristics

$$\partial_t X(t,s) = t, \quad X(t_{\Gamma}(s),s) = x_{\Gamma}(s).$$

The solution is $X(t,s) = \frac{1}{2}t^2 - \frac{1}{2}t_{\Gamma}^2(s) + x_{\Gamma}(s).$

(iii) Set $\Phi(t,s) := u(X(t,s),t)$ and compute $\partial_t \Phi(t,s)$. This gives

$$\begin{aligned} \partial_t \Phi(t,s) &= \partial_t u(X(t,s),t) + \partial_x u(X(t,s),t) \partial_t X(t,s) \\ &= \partial_t u(X(t,s),t) + t \partial_x u(X(t,s),t) = 2u(X(t,s),t) = 2\Phi(t,s) \end{aligned}$$

The solution is $\Phi(t,s) = \Phi(t_{\Gamma}(s),s)e^{2(t-t_{\Gamma}(s))}$.

(iv) The implicit representation of the solution is

$$X(t,s) = \frac{1}{2}t^2 - \frac{1}{2}t_{\Gamma}^2(s) + x_{\Gamma}(s), \quad u(X(t,s)) = u_{\Gamma}(s)e^{2(t-t_{\Gamma}(s))}, \quad u_{\Gamma}(s) = \begin{cases} s & \text{if } s > 0\\ -s & \text{if } s \le 0 \end{cases}$$

(v) We distinguish two cases to get the explicit form of the solution:

<u>Case 1</u>: Assume s > 0, then $t_{\Gamma}(s) = 0$ and $x_{\Gamma}(s) = s$. This implies $X(t,s) = \frac{1}{2}t^2 + s$, meaning $s = X - \frac{1}{2}t^2$. The solution is

$$u(x,t) = (x - \frac{1}{2}t^2)e^{2t}, \quad \text{if} \quad x > \frac{1}{2}t^2.$$

<u>Case 2</u>: Assume $s \le 0$, then $t_{\Gamma}(s) = -s$ and $x_{\Gamma}(s) = 0$. This implies $X(t,s) = \frac{1}{2}t^2 - \frac{1}{2}s^2$, meaning $s = -\sqrt{t^2 - 2X}$. The solution is

$$u(x,t) = \sqrt{t^2 - 2x} e^{2(t - \sqrt{t^2 - 2x})}, \quad \text{if} \quad x \leq \frac{1}{2}t^2.$$

Question 87: Let $\Omega = \{(t,x) \in \mathbb{R}^2 : t > 0, x \ge t\}$. Let Γ be defined by the following parameterization $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s), s \in \mathbb{R}\}$, with $x_{\Gamma}(s) = -s$ and $t_{\Gamma}(s) = -s$ if $s \le 0$,

 $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$ if $s \ge 0$. Solve the following PDE (give the implicit and explicit representations):

$$u_t + 3u_x + 2u = 0, \quad \text{in } \Omega, \qquad u(x,t) = u_{\Gamma}(x,t) := \begin{cases} 1 & \text{if } t = 0\\ 2 & \text{if } x = t \end{cases} \quad \text{for all } (x,t) \text{ in } \Gamma.$$

Solution: We define the characteristics by

$$\frac{dx(t,s)}{dt} = 3, \quad x(t_{\Gamma}(s),s) = x_{\Gamma}(s).$$

This gives $x(t,s) = x_{\Gamma}(s) + 3(t - t_{\Gamma}(s))$. Upon setting $\phi(t,s) = u(x(t,s),t)$, we observe that $\partial_t \phi(t,s) + 2\phi(t,s) = 0$, which means

$$\phi(t,s) = ce^{-2t}.$$

The initial condition implies $\phi(t_{\Gamma}(s), s) = u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))$; as a result $c = u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))e^{2t_{\Gamma}(s)}$.

$$\phi(t,s) = u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))e^{2(t_{\Gamma}(s)-t)}.$$

The implicit representation of the solution is

$$u(x(t,s),t) = u_{\Gamma}(x_{\Gamma}(s),t_{\Gamma}(s))e^{2(t_{\Gamma}(s)-t)}, \qquad x(t,s) = x_{\Gamma}(s) + 3(t-t_{\Gamma}(s)).$$

Now we give the explicit representation.

Case 1: If $s \leq 0$, $x_{\Gamma}(s) = -s$, $t_{\Gamma}(s) = -s$, and $u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s)) = 2$. This means x(t, s) = -s + 3(t+s) and we obtain $s = \frac{1}{2}(x-3t)$, which means

$$u(x,t) = 2e^{-2(\frac{1}{2}(x-3t)-t)} = 2e^{t-x}, \quad \text{if } x - 3t < 0.$$

Case 2: If $s \ge 0$, $x_{\Gamma}(s) = s$, $t_{\Gamma}(s) = 0$, and $u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s)) = 1$. This means x(t, s) = s + 3t and we obtain s = x - 3t, which means

$$u(x,t) = e^{-2t}$$
, if $x - 3t > 0$.

Question 88: Let $\Omega = \{(t, x) \in \mathbb{R}^2 : t > 0, x \ge -\sqrt{t}\}$. Let Γ be defined by the following parameterization $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s), s \in \mathbb{R}\}$, with $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = s^2$ if $s \le 0$, $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$ if $s \ge 0$. Solve the following PDE (give the implicit and explicit representations):

 $u_t + 2u_x + 3u = 0$, in Ω , and $u(x_{\Gamma}(s), t_{\Gamma}(s)) := e^{-t_{\Gamma}(s) - x_{\Gamma}(s)}, \quad \forall s \in (-\infty, +\infty).$

Solution: We define the characteristics by

$$\frac{dX(t,s)}{dt} = 2, \quad X(t_{\Gamma}(s),s) = x_{\Gamma}(s).$$

This gives $X(t,s) = x_{\Gamma}(s) + 2(t - t_{\Gamma}(s))$. Upon setting $\phi(t,s) = u(X(t,s),t)$, we observe that $\partial_t \phi(t,s) + 3\phi(t,s) = 0$, which means

$$\phi(t,s) = ce^{-3t}.$$

The initial condition implies $\phi(t_{\Gamma}(s), s) = u(x_{\Gamma}(s), t_{\Gamma}(s)) = e^{-t_{\Gamma}(s) - x_{\Gamma}(s)} = ce^{-3t_{\Gamma}(s)}$; as a result $c = e^{2t_{\Gamma}(s) - x_{\Gamma}(s)}$ and

$$\phi(t,s) = e^{2t_{\Gamma}(s) - x_{\Gamma}(s) - 3t}.$$

The implicit representation of the solution is

$$u(X(t,s),t) = e^{2t_{\Gamma}(s) - x_{\Gamma}(s) - 3t}, \qquad X(t,s) = x_{\Gamma}(s) + 2(t - t_{\Gamma}(s)).$$

Now we give the explicit representation.

We observe the following:

$$2t_{\Gamma}(s) - x_{\Gamma}(s) = 2t - X(t,s),$$

which gives

$$u(X(t,s),t) = e^{2t - X(t,s) - 3t} = e^{-X(t,s) - t}$$

In conclusion, the explicit representation of the solution to the problem is the following:

$$u(x,t) = e^{-x-t}.$$

Question 89: Let $\Omega = \{(t,x) \in \mathbb{R}^2 : t > 0, x \ge -t\}$. Let Γ be defined by the following parameterization $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s), s \in \mathbb{R}\}$, with $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = -s$ if $s \le 0$, $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$ if $s \ge 0$. Solve the following PDE (give the implicit and explicit representations):

$$u_t + 2u_x + u = 0, \quad \text{in } \Omega, \qquad u(x,t) = u_{\Gamma}(x,t) := \begin{cases} 1 & \text{if } x > 0\\ 2 & \text{if } x < 0 \end{cases} \quad \text{for all } (x,t) \text{ in } \Gamma.$$

Solution: We define the characteristics by

$$\frac{dx(t,s)}{dt} = 2, \quad x(t_{\Gamma}(s),s) = x_{\Gamma}(s)$$

This gives $x(t,s) = x_{\Gamma}(s) + 2(t - t_{\Gamma}(s))$. Upon setting $\phi(t,s) = u(x(t,s),t)$, we observe that $\partial_t \phi(t,s) + \phi(t,s) = 0$, which means

$$\phi(t,s) = ce^{-t}.$$

The initial condition implies $\phi(t_{\Gamma}(s), s) = u_{\Gamma}(x_{\gamma}(s), t_{\Gamma}(s))$; as a result $c = u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))e^{t_{\Gamma}(s)}$.

$$\phi(t,s) = u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))e^{t_{\Gamma}(s)-t}$$

The implicit representation of the solution is

$$u(x(t,s),t) = u_{\Gamma}(x_{\Gamma}(s),t_{\Gamma}(s))e^{t_{\Gamma}(s)-t}, \qquad x(t,s) = x_{\Gamma}(s) + 2(t-t_{\Gamma}(s)).$$

Now we give the explicit representation.

Case 1: If $s \leq 0$, $x_{\Gamma}(s) = s$, $t_{\Gamma}(s) = -s$, and $u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s)) = 2$. This means x(t,s) = s+2(t+s) and we obtain $s = \frac{1}{3}(x-2t)$, which means

$$u(x,t) = 2e^{-\frac{1}{3}(x-2t)-t}, \quad \text{if } x - 2t < 0.$$

Case 2: If $s \ge 0$, $x_{\Gamma}(s) = s$, $t_{\Gamma}(s) = 0$, and $u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s)) = 1$. This means x(t, s) = s + 2t and we obtain s = x - 2t, which means

$$u(x,t) = e^{-t}, \quad \text{if } x - 2t > 0.$$

Question 90: Let $\Omega = \{(x,t) \in \mathbb{R}^2 \mid t > 0, x \ge \frac{1}{t}\}$. Solve the following PDE in explicit form with the method of characteristics: (Solution: $u(x,t) = (2 + \cos(s))e^{\frac{1}{s}-t}$ with $s = \frac{1}{2}[(x-2t) + \sqrt{(x-2t)^2 + 8}]$)

$$\partial_t u(x,t) + 2\partial_x u(x,t) = -u(x,t), \quad \text{in } \Omega, \quad \text{and} \quad u(x,t) = 2 + \cos(x), \text{ if } x = 1/t.$$

Solution: (i) First we parameterize the boundary of Ω by setting $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s); s \in \mathbb{R}\}$ with $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = \frac{1}{s}$. This choice implies

$$u(x_{\Gamma}(s), t_{\Gamma}(s)) := u_{\Gamma}(s) := 2 + \cos(s).$$

(ii) We compute the characteristics

$$\partial_t X(t,s) = 2, \quad X(t_{\Gamma}(s),s) = x_{\Gamma}(s).$$

The solution is $X(t,s) = 2(t - t_{\Gamma}(s)) + x_{\Gamma}(s)$.

(iii) Set $\Phi(t,s) := u(X(t,s),t)$ and compute $\partial_t \Phi(t,s)$. This gives

$$\begin{aligned} \partial_t \Phi(t,s) &= \partial_t u(X(t,s),t) + \partial_x u(X(t,s),t) \partial_t X(t,s) \\ &= \partial_t u(X(t,s),t) + 2 \partial_x u(X(t,s),t) = u(X(t,s),t) = -\Phi(t,s). \end{aligned}$$

The solution is $\Phi(t,s) = \Phi(t_{\Gamma}(s),s)e^{-t+t_{\Gamma}(s)}$.

(iv) The implicit representation of the solution is

$$X(t,s) = 2(t - t_{\Gamma}(s)) + x_{\Gamma}(s), \qquad u(X(t,s)) = u_{\Gamma}(s)e^{-t + t_{\Gamma}(s)}.$$

(v) The explicit representation is obtained by using the definitions of $-t_{\Gamma}(s)$, $x_{\Gamma}(s)$ and $u_{\Gamma}(s)$.

$$X(s,t) = 2(t - \frac{1}{s}) + s = 2t - \frac{2}{s} + s$$

which gives the equation

$$s^2 - s(X - 2t) - 2 = 0$$

The solutions are $s_{\pm} = \frac{1}{2} \left((X - 2t) \pm \sqrt{(X - 2t)^2 + 8} \right)$. The only legitimate solution is the positive one:

$$s = \frac{1}{2} \left((X - 2t) + \sqrt{(X - 2t)^2 + 8} \right)$$

The solution is

$$\begin{split} u(x,t) &= (2+\cos(s))e^{\frac{1}{s}-t} \\ \text{with } s &= \frac{1}{2}((x-2t)+\sqrt{(x-2t)^2+8}) \end{split}$$