6 Method of characteristics

Question 80: (a) Show that the PDE $u_y = 0$ in the half plane $\{x > 0\}$ has no solution which is \mathcal{C}^1 and satisfies the boundary condition $u(y^2, y) = y$.

Solution: The PDE implies that $u(x, y) = \phi(x)$ where ϕ is any C^1 function. The boundary condition implies $\phi(1) = u(1,-1) = -1$ and $\phi(1) = u(1,1) = 1$, which is impossible. The reason for this happening is that the characteristics lines ($x = c$) cross the boundary curve (the parabola of equation $x=y^2$) twice.

(b) Find the \mathcal{C}^1 function that solves the above PDE in the quadrant $\{x > 0, 0 > y\}$ (beware the sign of y).

Solution: The PDE implies $u(x, y) = \phi(x)$ and the boundary condition implies $\phi(y^2) = u(y^2, y) =$ $y = -|y|$ since y is negative. Then $u(x, y) = \phi(x) = -\sqrt{x}$.

Question 81: Let $\Omega = \{x > 0, y > 0\}$ be the first quadrant of the plane. Let Γ be the line defined by the following parameterization $\Gamma = \{x = s, y = 1/s, s > 0\}$. Solve the following PDE:

$$
xu_x + 2yu_y = 0, \text{ in } \Omega,
$$

$$
u(x, y) = x \text{ on } \Gamma.
$$

Solution: The characteristics are $X(\tau,s) = se^{\tau}$, $Y(\tau,s) = s^{-1}e^{2\tau}$. Upon setting $u(X(\tau,s), Y(\tau,s)) =$ $w(\tau,s)$, we obtain $w(\tau,s) = w(0,s)$. Then the boundary condition implies $w(0,s) = u(s,\frac{1}{s}) = s.$ In other words $u(x, y) = (x^2y^{-1})^{1/3}$.

Question 82: (a) Solve the quasi-linear PDE $3u^2u_x + 3u^2u_y = 1$ in the plane by using the method of Lagrange (that is, show that u solves the nonlinear equation $c(a(x, y, u), b(x, y, u)) =$ 0 where c is an arbitrary function and a, b are polynomials of degree 3 that you must find.)

Solution: The auxiliary equation is $3z^2\phi_x + 3z^2\phi_y + \phi_z = 0$. Define the plane $\Gamma = \{x = s, y = 0\}$ $s', z = 0$ } and enforce $\phi(x, y, z) = \phi_0(s, s')$ on Γ , where ϕ_0 is an arbitrary \mathcal{C}^1 function. The characteristics are $X(\tau,s,s') = \tau^3 + s Y(\tau,s,s') = \tau^3 + s'$, $Z(\tau,s,s') = \tau$. Then $\phi(x,y,z) = \tau^3 + s'$ $\phi_0(s,s')$ where $s=x-z^3$ and $s'=y-z^3$. Then $\phi(x,y,z)=\phi_0(x-z^3,y-z^3)$. Hence, u solves $\phi_0(x-u^3, y-u^3)=0.$

(b) Find a solution to the above PDE that satisfies the boundary condition $u(x, 2x) = 1$.

Solution: We want $\phi_0(x-1, 2x-1) = 0$. Take $\phi_0(\alpha, \beta) = 2\alpha - \beta + 1$. Then $2(x-u^3) - (y-u^3) + 1 = 0$ 0, that is $u(x,y) = (1 + 2x - y)^{1/3}$.

Question 83: We want to solve the following PDE:

$$
\partial_t w + 3\partial_x w = 0, \quad x > -t, \ t > 0
$$

\n
$$
w(x, t) = w_\Gamma(x, t), \text{ for all } (x, t) \in \Gamma \text{ where}
$$

\n
$$
\Gamma = \{(x, t) \in \mathbb{R}^2 \text{ s.t. } x = -t, \ x < 0\} \cup \{(x, t) \in \mathbb{R}^2 \text{ s.t. } t = 0, \ x \ge 0\}
$$

\nand w_Γ is a given function.

(a) Draw a picture of the domain Ω where the PDE must be solved, of the boundary Γ, and of the characteristics.

Solution:

(b) Define a one-to-one parametric representation of the boundary Γ.

Solution: For negative s we set $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = -s$; clearly we have $x_{\Gamma}(s) = -t_{\Gamma}(s)$ for all s < 0. For positive s we set $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$. The map $\mathbb{R} \in s \mapsto (x_{\Gamma}(s), t_{\Gamma}(s)) \in \Gamma$ is one-t-one.

(c) Give a parametric representation of the characteristics associated with the PDE.

Solution: (i) We use t and s to parameterize the characteristics. The characteristics are defined by

$$
\partial_t X(t,s) = 3
$$
, with $x(t) \Gamma(s), s) = x_{\Gamma}(s)$.

This yields the following parametric representation of the characteristics

$$
X(t,s) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s),
$$

where $t \geq 0$ and $s \in (-\infty, +\infty)$.

(d) Give an implicit parametric representation of the solution to the PDE.

Solution: (i) Now we set $\phi(t, s) = w(X(t, s), t(t, s))$ and we insert this ansatz in the equation. This gives $\frac{d\phi}{dt}(t,s)=0$, i.e., $\phi(t,s)$ does not depend on $t.$ In other words

$$
w(X(t, s), t(t, s)) = \phi(t, s) = \phi(0, s) = w(x(0, s), t(0, s)) = w_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))
$$

A parametric representation of the solution is given by

$$
X(t,s) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s),
$$

$$
w(X(t,s), t(t,s)) = w_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s)).
$$

(e) Give an explicit representation of the solution.

Solution: (i) We have to find the inverse map $(x, t) \mapsto (t, s)$. Clearly $x - 3t = x_0(s) - 3t_0(s)$. Then, there are two cases depending on the sign of s.

case 1: If $s < 0$, then $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = -s$. That means $x - 3t = 4s$, which in turns implies $s = \frac{1}{4}(x - 3t)$. Then

$$
w(x,t) = w_{\Gamma}(\frac{1}{4}(x-3t), -\frac{1}{4}(x-3t)), \quad \text{if } x - 3t < 0.
$$

case 2: If $s > 0$, then $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$. That means $x - 3t = s$. Then

 $w(x, t) = w_{\Gamma}(x - 3t, 0), \text{ if } x - 3t > 0.$

Note that the explicit representation of the solution does not depend on the choice of the parameterization.

Question 84: Solve the following PDE by the method of characteristics:

 $\partial_t w + 3\partial_x w = 0, \quad x > 0, t > 0$ $w(x, 0) = f(x), \quad x > 0, \quad \text{and} \quad w(0, t) = h(t), \quad t > 0.$ **Solution:** First we parameterize the boundary of Ω by setting $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s); s \in \mathbb{R}\}\$ with

$$
x_\Gamma(s) = \begin{cases} 0 & \text{if } s < 0, \\ s, & \text{if } s \geq 0. \end{cases} \quad \text{and} \quad t_\Gamma(s) = \begin{cases} -s & \text{if } s < 0, \\ 0, & \text{if } s \geq 0. \end{cases}
$$

The we define the characteristics by

$$
\partial_t X(s,t) = 3
$$
, with $X(s,t_\Gamma(s)) = x_\Gamma(s)$.

The general solution is $X(s,t) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s)$. Now we make the change of variable $\phi(s,t) = w(X(s,t),t)$ and we compute $\partial_t \phi(s,t)$,

$$
\partial_t \phi(s,t) = \partial_t w(X(s,t),t) + \partial_x w(X(s,t),t) \partial_t X(s,t) = \partial_t w(X(s,t),t) + 3\partial_x w(X(s,t),t) = 0.
$$

This means that $\phi(s,t) = \phi(s,t_\Gamma(s))$. In other words

$$
w(X(s,t),t) = w(X(s,t_{\Gamma}(s)),t_{\Gamma}(s)) = w(x_{\Gamma}(s),t_{\Gamma}(s)).
$$

Case 1: If $s < 0$, then $X(s,t) = 3(t - t_{\Gamma}(s))$. This implies $t_{\Gamma}(s) = t - X/3$. The condition $s < 0$ and the definition $t_{\Gamma}(s) = -s$ imply $t - X/3 \geq 0$. Moreover we have

$$
w(X,t) = w(0, t_{\Gamma}(s)) = h(t_{\Gamma}(s)).
$$

In conlusion

$$
w(X,t) = h(t - X/3), \quad \text{if} \quad 3t > X.
$$

Case 2: If $s \geq 0$, then $X(s,t) = 3t + x_{\Gamma}(s)$. This implies $x_{\Gamma}(s) = X - 3t$. The condition $s \geq 0$ and the definition $x_{\Gamma}(s) = s$ imply $X - 3t \geq 0$. Moreover we have

$$
w(X,t) = w(x_{\Gamma}(s),0) = f(x_{\Gamma}(s)).
$$

In conlusion

$$
w(X,t) = f(X - 3t), \quad \text{if} \quad X \ge 3t.
$$

Question 85: Let $\Omega = \{(x, t) \in \mathbb{R}^2; x + 2t \geq 0\}$. Solve the following PDE in explicit form with the method of characteristics:

$$
\partial_t u(x,t) + 3\partial_x u(x,t) = u(x,t)
$$
, in Ω , and $u(x,t) = 1 + \sin(x)$, if $x + 2t = 0$.

Solution: (i) First we parameterize the boundary of Ω by setting $\Gamma = \{x = x_0(s), t = t_0(s); s \in \mathbb{R}\}$ \mathbb{R} with $x_{\Gamma}(s) = -2s$ and $t_{\Gamma}(s) = s$. This choice implies

$$
u(x_{\Gamma}(s), t_{\Gamma}(s)) := u_{\Gamma}(s) := 1 + \sin(-2s).
$$

(ii) We compute the characteristics

$$
\partial_t X(t,s) = 3, \quad X(t_\Gamma(s),s) = x_\Gamma(s).
$$

The solution is $X(t, s) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s)$.

(iii) Set $\Phi(t, s) := u(X(t, s), t)$ and compute $\partial_t \Phi(t, s)$. This gives

$$
\partial_t \Phi(t,s) = \partial_t u(X(t,s),t) + \partial_x u(X(t,s),t) \partial_t X(t,s)
$$

=
$$
\partial_t u(X(t,s),t) + 3\partial_x u(X(t,s),t) = u(X(t,s),t) = \Phi(t,s).
$$

The solution is $\Phi(t,s) = \Phi(t_{\Gamma}(s),s)e^{t-t_{\Gamma}(s)}$.

(iv) The implicit representation of the solution is

$$
X(t,s) = 3(t - t_{\Gamma}(s)) + x_{\Gamma}(s) \quad u(X(t,s)) = u_{\Gamma}(s)e^{t - t_{\Gamma}(s)}.
$$

(v) The explicit representation is obtained by using the definitions of $-t_Γ(s)$, $x_Γ(s)$ and $u_Γ(s)$.

$$
X(s,t) = 3(t - s) - 2s = 3t - 5s,
$$

which gives

$$
s = \frac{1}{5}(3t - X).
$$

The solution is

$$
u(x,t) = (1 + \sin(\frac{2}{5}(x - 3t)))e^{t - \frac{1}{5}(3t - x)}
$$

= $(1 + \sin(\frac{2(x - 3t)}{5}))e^{\frac{x + 2t}{5}}$.

Question 86: Let $\Omega = \{(x, t) \in \mathbb{R}^2; x \geq 0, t \geq 0\}$. Solve the following PDE in explicit form

$$
\partial_t u(x,t) + t \partial_x u(x,t) = 2u(x,t)
$$
, in Ω , and $u(0,t) = t$, $u(x,0) = x$.

Solution: (i) First we parameterize the boundary of Ω by setting $\Gamma = \{x = x_0(s), t = t_0(s); s \in \mathbb{R}\}$ R} with $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$ if $s > 0$ and $x_{\Gamma}(s) = 0$ and $t_{\Gamma}(s) = -s$ if $s \le 0$. This choice implies

$$
u(x_{\Gamma}(s), t_{\Gamma}(s)) := u_{\Gamma}(s) := \begin{cases} s & \text{if } s > 0 \\ -s & \text{if } s \leq 0 \end{cases}.
$$

(ii) We compute the characteristics

$$
\partial_t X(t,s) = t, \quad X(t_\Gamma(s),s) = x_\Gamma(s).
$$

The solution is $X(t,s) = \frac{1}{2}t^2 - \frac{1}{2}t_{\Gamma}^2(s) + x_{\Gamma}(s)$.

(iii) Set $\Phi(t, s) := u(X(t, s), t)$ and compute $\partial_t \Phi(t, s)$. This gives

$$
\partial_t \Phi(t,s) = \partial_t u(X(t,s),t) + \partial_x u(X(t,s),t) \partial_t X(t,s)
$$

=
$$
\partial_t u(X(t,s),t) + t \partial_x u(X(t,s),t) = 2u(X(t,s),t) = 2\Phi(t,s).
$$

The solution is $\Phi(t,s) = \Phi(t_\Gamma(s),s)e^{2(t-t_\Gamma(s))}.$

(iv) The implicit representation of the solution is

$$
X(t,s) = \frac{1}{2}t^2 - \frac{1}{2}t^2\Gamma(s) + x\Gamma(s), \quad u(X(t,s)) = u\Gamma(s)e^{2(t-t\Gamma(s))}, \quad u\Gamma(s) = \begin{cases} s & \text{if } s > 0 \\ -s & \text{if } s \le 0 \end{cases}.
$$

(v) We distinguish two cases to get the explicit form of the solution:

Case 1: Assume $s > 0$, then $t_{\Gamma}(s) = 0$ and $x_{\Gamma}(s) = s$. This implies $X(t, s) = \frac{1}{2}t^2 + s$, meaning $s = X - \frac{1}{2}t^2$. The solution is

$$
u(x,t) = (x - \frac{1}{2}t^2)e^{2t}
$$
, if $x > \frac{1}{2}t^2$.

<u>Case 2</u>: Assume $s \le 0$, then $t_{\Gamma}(s) = -s$ and $x_{\Gamma}(s) = 0$. This implies $X(t, s) = \frac{1}{2}t^2 - \frac{1}{2}s^2$, meaning $s=-\sqrt{t^2-2X}$. The solution is

$$
u(x,t) = \sqrt{t^2 - 2x} e^{2(t - \sqrt{t^2 - 2x})}
$$
, if $x \le \frac{1}{2}t^2$.

Question 87: Let $\Omega = \{(t, x) \in \mathbb{R}^2 : t > 0, x \geq t\}$. Let Γ be defined by the following parameterization $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s), s \in \mathbb{R}\},\$ with $x_{\Gamma}(s) = -s$ and $t_{\Gamma}(s) = -s$ if $s \leq 0$, $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$ if $s \geq 0$. Solve the following PDE (give the implicit and explicit representations):

$$
u_t + 3u_x + 2u = 0, \quad \text{in } \Omega, \qquad u(x,t) = u_\Gamma(x,t) := \begin{cases} 1 & \text{if } t = 0 \\ 2 & \text{if } x = t \end{cases} \quad \text{for all } (x,t) \text{ in } \Gamma.
$$

Solution: We define the characteristics by

$$
\frac{dx(t,s)}{dt} = 3, \quad x(t_{\Gamma}(s),s) = x_{\Gamma}(s).
$$

This gives $x(t, s) = x_{\Gamma}(s) + 3(t - t_{\Gamma}(s))$. Upon setting $\phi(t, s) = u(x(t, s), t)$, we observe that $\partial_t \phi(t, s) + 2\phi(t, s) = 0$, which means

$$
\phi(t,s) = ce^{-2t}.
$$

The initial condition implies $\phi(t_\Gamma(s),s)=u_\Gamma(x_\Gamma(s),t_\Gamma(s))$; as a result $c=u_\Gamma(x_\Gamma(s),t_\Gamma(s))e^{2t_\Gamma(s)}.$

$$
\phi(t,s) = u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))e^{2(t_{\Gamma}(s)-t)}.
$$

The implicit representation of the solution is

$$
u(x(t,s),t) = u_{\Gamma}(x_{\Gamma}(s),t_{\Gamma}(s))e^{2(t_{\Gamma}(s)-t)}, \qquad x(t,s) = x_{\Gamma}(s) + 3(t - t_{\Gamma}(s)).
$$

Now we give the explicit representation.

Case 1: If $s \le 0$, $x_{\Gamma}(s) = -s$, $t_{\Gamma}(s) = -s$, and $u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s)) = 2$. This means $x(t, s) =$ $-s+3(t+s)$ and we obtain $s=\frac{1}{2}(x-3t)$, which means

$$
u(x,t) = 2e^{-2(\frac{1}{2}(x-3t)-t)} = 2e^{t-x}, \quad \text{if } x - 3t < 0.
$$

Case 2: If $s \geq 0$, $x_{\Gamma}(s) = s$, $t_{\Gamma}(s) = 0$, and $u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s)) = 1$. This means $x(t, s) = s + 3t$ and we obtain $s = x - 3t$, which means

$$
u(x,t) = e^{-2t}
$$
, if $x - 3t > 0$.

Question 88: Let $\Omega = \{(t, x) \in \mathbb{R}^2 : t > 0, x \geq -\sqrt{t}\}\)$. Let Γ be defined by the following parameterization $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s), s \in \mathbb{R}\},\$ with $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = s^2$ if $s \leq 0$, $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$ if $s \ge 0$. Solve the following PDE (give the implicit and explicit representations):

 $u_t + 2u_x + 3u = 0$, in Ω , $^{-t_{\Gamma}(s)-x_{\Gamma}(s)}, \quad \forall s \in (-\infty, +\infty).$

Solution: We define the characteristics by

$$
\frac{dX(t,s)}{dt} = 2, \quad X(t_{\Gamma}(s),s) = x_{\Gamma}(s).
$$

This gives $X(t, s) = x_{\Gamma}(s) + 2(t - t_{\Gamma}(s))$. Upon setting $\phi(t, s) = u(X(t, s), t)$, we observe that $\partial_t \phi(t, s) + 3\phi(t, s) = 0$, which means

$$
\phi(t,s) = ce^{-3t}.
$$

The initial condition implies $\phi(t_\Gamma(s),s)=u(x_\Gamma(s),t_\Gamma(s))=e^{-t_\Gamma(s)-x_\Gamma(s)}=ce^{-3t_\Gamma(s)};$ as a result $c = e^{2t_{\Gamma}(s) - x_{\Gamma}(s)}$ and

$$
\phi(t,s) = e^{2t_\Gamma(s) - x_\Gamma(s) - 3t}.
$$

The implicit representation of the solution is

$$
u(X(t,s),t) = e^{2t_{\Gamma}(s) - x_{\Gamma}(s) - 3t}, \qquad X(t,s) = x_{\Gamma}(s) + 2(t - t_{\Gamma}(s)).
$$

Now we give the explicit representation.

We observe the following:

$$
2t_{\Gamma}(s) - x_{\Gamma}(s) = 2t - X(t, s),
$$

which gives

$$
u(X(t,s),t) = e^{2t - X(t,s) - 3t} = e^{-X(t,s) - t}.
$$

In conclusion, the explicit representation of the solution to the problem is the following:

$$
u(x,t) = e^{-x-t}.
$$

Question 89: Let $\Omega = \{(t, x) \in \mathbb{R}^2 : t > 0, x \ge -t\}$. Let Γ be defined by the following parameterization $\Gamma = \{x = x_{\Gamma}(s), t = t_{\Gamma}(s), s \in \mathbb{R}\},\$ with $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = -s$ if $s \leq 0$, $x_{\Gamma}(s) = s$ and $t_{\Gamma}(s) = 0$ if $s \ge 0$. Solve the following PDE (give the implicit and explicit representations):

$$
u_t + 2u_x + u = 0, \quad \text{in } \Omega, \qquad u(x,t) = u_\Gamma(x,t) := \begin{cases} 1 & \text{if } x > 0 \\ 2 & \text{if } x < 0 \end{cases} \quad \text{for all } (x,t) \text{ in } \Gamma.
$$

Solution: We define the characteristics by

$$
\frac{dx(t,s)}{dt} = 2, \quad x(t_{\Gamma}(s),s) = x_{\Gamma}(s).
$$

This gives $x(t, s) = x_{\Gamma}(s) + 2(t - t_{\Gamma}(s))$. Upon setting $\phi(t, s) = u(x(t, s), t)$, we observe that $\partial_t \phi(t, s) + \phi(t, s) = 0$, which means

$$
\phi(t,s) = ce^{-t}.
$$

The initial condition implies $\phi(t_\Gamma(s),s)=u_\Gamma(x_\gamma(s),t_\Gamma(s))$; as a result $c=u_\Gamma(x_\Gamma(s),t_\Gamma(s))e^{t_\Gamma(s)}.$

$$
\phi(t,s) = u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))e^{t_{\Gamma}(s)-t}.
$$

The implicit representation of the solution is

$$
u(x(t,s),t) = u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s))e^{t_{\Gamma}(s)-t}, \qquad x(t,s) = x_{\Gamma}(s) + 2(t - t_{\Gamma}(s)).
$$

Now we give the explicit representation.

Case 1: If $s \le 0$, $x_{\Gamma}(s) = s$, $t_{\Gamma}(s) = -s$, and $u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s)) = 2$. This means $x(t, s) = s + 2(t + s)$ and we obtain $s = \frac{1}{3}(x - 2t)$, which means

$$
u(x,t) = 2e^{-\frac{1}{3}(x-2t) - t}, \quad \text{if } x - 2t < 0.
$$

Case 2: If $s \geq 0$, $x_{\Gamma}(s) = s$, $t_{\Gamma}(s) = 0$, and $u_{\Gamma}(x_{\Gamma}(s), t_{\Gamma}(s)) = 1$. This means $x(t, s) = s + 2t$ and we obtain $s = x - 2t$, which means

$$
u(x,t) = e^{-t}
$$
, if $x - 2t > 0$.

Question 90: Let $\Omega = \{(x, t) \in \mathbb{R}^2 \mid t > 0, x \ge \frac{1}{t}\}.$ Solve the following PDE in explicit form with the method of characteristics: (Solution: $u(x,t) = (2 + \cos(s))e^{\frac{1}{s} - t}$ with $s = \frac{1}{2}[(x - 2t) +$ $\sqrt{(x-2t)^2+8}$

 $\partial_t u(x, t) + 2\partial_x u(x, t) = -u(x, t), \text{ in } \Omega, \text{ and } u(x, t) = 2 + \cos(x), \text{ if } x = 1/t.$

Solution: (i) First we parameterize the boundary of Ω by setting $\Gamma = \{x = x_0(s), t = t_0(s); s \in \mathbb{R}\}$ \mathbb{R} } with $x_{\Gamma}(s)=s$ and $t_{\Gamma}(s)=\frac{1}{s}$. This choice implies

$$
u(x_{\Gamma}(s), t_{\Gamma}(s)) := u_{\Gamma}(s) := 2 + \cos(s).
$$

(ii) We compute the characteristics

$$
\partial_t X(t,s) = 2, \quad X(t_\Gamma(s),s) = x_\Gamma(s).
$$

The solution is $X(t, s) = 2(t - t_{\Gamma}(s)) + x_{\Gamma}(s)$.

(iii) Set $\Phi(t, s) := u(X(t, s), t)$ and compute $\partial_t \Phi(t, s)$. This gives

$$
\partial_t \Phi(t,s) = \partial_t u(X(t,s),t) + \partial_x u(X(t,s),t) \partial_t X(t,s)
$$

=
$$
\partial_t u(X(t,s),t) + 2\partial_x u(X(t,s),t) = u(X(t,s),t) = -\Phi(t,s).
$$

The solution is $\Phi(t,s) = \Phi(t_{\Gamma}(s),s)e^{-t+t_{\Gamma}(s)}$.

(iv) The implicit representation of the solution is

$$
X(t,s) = 2(t - t_{\Gamma}(s)) + x_{\Gamma}(s),
$$
 $u(X(t,s)) = u_{\Gamma}(s)e^{-t + t_{\Gamma}(s)}.$

(v) The explicit representation is obtained by using the definitions of $-t_{\Gamma}(s)$, $x_{\Gamma}(s)$ and $u_{\Gamma}(s)$.

$$
X(s,t) = 2(t - \frac{1}{s}) + s = 2t - \frac{2}{s} + s
$$

which gives the equation

$$
s^2 - s(X - 2t) - 2 = 0
$$

The solutions are $s_{\pm}~=~\frac{1}{2}\left((X-2t)\pm\sqrt{(X-2t)^2+8}\right)$. The only legitimate solution is the positive one: 1

$$
s = \frac{1}{2} \left((X - 2t) + \sqrt{(X - 2t)^2 + 8} \right)
$$

The solution is

$$
u(x,t) = (2 + \cos(s))e^{\frac{1}{s} - t}
$$

with $s = \frac{1}{2}((x - 2t) + \sqrt{(x - 2t)^2 + 8})$