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8 Greens function

Question 101: Let Ω be a three-dimensional domain and consider the PDE

∇2u = f(x), x ∈ Ω, with u(x) = h(x) on the boundary of Ω, say Γ.

Let G(x, x0) be the Green’s function of this problem (the exact expression of G does not matter;
just assume that G is known). Give a representation1 of u(x) in terms of G, f and h.

Solution: By definition

∇2
xG(x, x0) = δ(x− x0), x ∈ Ω, with G(x, x0) = 0 x ∈ Γ.

Then using the integration by parts formula, we obtain∫
Ω

u(x)∇2
x(G(x, x0))dx =

∫
Ω

∇2
x(u(x))G(x, x0)dx+

∫
Γ

u(x)∂n(G(x, x0))dx−
∫

Γ

∂n(u(x))G(x, x0)dx.

which can also be rewritten

u(x0) =

∫
Ω

f(x)G(x, x0)dx+

∫
Γ

h(x)∂n(G(x, x0))dx.

Question 102: Let f be a smooth function in [0, 1]. Consider the PDE

u− ∂xxu = f(x), x ∈ (0, 1), ∂xu(1) + u(1) = 2, −∂xu(0) + u(0) = 1.

What PDE and which boundary conditions must satisfy the Green function, G(x, x0), (DO
NOT compute the Green function)? Give the integral representation of u assuming G(x, x0) is
known. Fully justify your answer.

Solution: Multiply the equation by G(x, x0) and integrate over (0, 1):∫ 1

0

f(x)G(x, x0)dx =

∫ 1

0

(u(x)− ∂xxu(x))G(x, x0)dx

=

∫ 1

0

u(x)G(x, x0) + ∂xu(x)∂xG(x, x0)dx− ∂xu(1)G(1, x0) + ∂xu(0)G(0, x0)

=

∫ 1

0

u(x)(G(x, x0)− ∂xxG(x, x0))dx+ u(1)∂xG(1, x0)− u(0)∂xG(0, x0)

− ∂xu(1)G(1, x0) + ∂xu(0)G(0, x0)

=

∫ 1

0

u(x)(G(x, x0)− ∂xxG(x, x0))dx+ u(1)∂xG(1, x0)− u(0)∂xG(0, x0)

(u(1)− 2)G(1, x0) + (u(0)− 1)G(0, x0)

=

∫ 1

0

u(x)(G(x, x0)− ∂xxG(x, x0))dx

+ u(1)(G(1, x0) + ∂xG(1, x0)) + u(0)(G(0, x0)− ∂xG(0, x0))− 2G(1, x0)−G(0, x0)

If we define G(x, x0) so that

G(x, x0)− ∂xxG(x, x0) = δ(x− x0), G(1, x0) + ∂xG(1, x0) = 0, G(0, x0)− ∂xG(0, x0) = 0,

then u(x0), x0 ∈ (0, 1), has the following representation

u(x0) =

∫ 1

0

f(x)G(x, x0)dx+ 2G(1, x0) +G(0, x0), ∀x0 ∈ (0, 1).

1Hint: use
∫
Ω ψ∇

2(φ) =
∫
Ω∇

2(ψ)φ+
∫
Γ ψ∂n(φ)−

∫
Γ ∂n(ψ)φ
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Question 103: Consider the equation u′(x) + u = f(x) for x ∈ (0, 1) with u(0) = a. Let
G(x, x0) be the associated Green’s function. (Pay attention to the number of derivatives).
(a) Give the equation and boundary condition defining G and give an integral representation
of u(x0) in terms of G, f and the boundary data a. (Do not compute G.)

Solution: The Green’s function is defined by

−G′(x, x0) +G(x, x0) = δ(x− x0), G(1, x0) = 0.

We multiply the equation by u and we integrate over (0, 1) (in the distribution sense),∫ 1

0

−G′(x, x0)u(x)dx+

∫ 1

0

G(x, x0)u(x)dx = u(x0).

We integrates by parts and we obtain,

u(x0) =

∫ 1

0

G(x, x0)(u′(x) + u(x))dx−G(1, x0)u(1) +G(0, x0)u(0)

Then, using the fact that u′ + u = f and using the boundary conditions for G and u, we obtain

u(x0) =

∫ 1

0

G(x, x0)f(x)dx+ 2G(0, x0). ∀x0 ∈ (0, 1).
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(b) Compute G(x, x0).

Solution: For x < x0 and x0 > x we have

−G′(x, x0) +G(x, x0) = 0.

The solution is

G(x, x0) =

{
αex for x < x0

βex for x > x0.

The boundary condition G(1, x0) = 0 implies β = 0.

For every ε > 0 we have

1 =

∫ x0+ε

x0−ε
(−G′(x, x0) +G(x, x0))dx

= G(x0 − ε, x0)−G(x0 + ε, x0) +

∫ x0+ε

x0−ε
G(x, x0)dx

The term Rε =
∫ x0+ε

x0−ε G(x, x0)dx can be bounded as follows:

|Rε| ≤ 2ε max
x∈[0,1]

|G(x, x0)| = 2εαex0 .

Clearly Rε goes to 0 with ε. As a result we obtain the jump condition

1 = G(x−0 , x0)−G(x+
0 , x0) = αex0 .

This implies
α = e−x0 .

Finally

G(x, x0) =

{
ex−x0 for x < x0

0 for x > x0.

Question 104: Consider the equation −∂x(x∂xu(x)) = f(x) for all x ∈ (1, 2) with u(1) = a
and u(2) = b. Let G(x, x0) be the associated Green’s function.
(i) Give the equation and boundary conditions satisfied byG and give the integral representation
of u(x0) for all x0 ∈ (1, 2) in terms of G, f , and the boundary data. (Do not compute G in this
question).

Solution: We have a second-order PDE and the operator is clearly self-adjoint. The Green’s function
solves the equation

−∂x(x∂xG(x, x0)) = δ(x− x0), G(1, x0) = 0, G(2, x0) = 0.

We multiply the equation by u and integrate over the domain (1, 2) (in the distribution sense).

〈δ(x− x0), u〉 = u(x0) = −
∫ 2

1

∂x(x∂xG(x, x0))u(x)dx.

We integrate by parts and we obtain,

u(x0) =

∫ 2

1

x∂xG(x, x0)∂xu(x)dx− [x∂xG(x, x0)u(x)]21

= −
∫ 2

1

G(x, x0)∂x(x∂xu(x))dx− 2∂xG(2, x0)u(2) + ∂xG(1, x0)u(1).

Now, using the boundary conditions and the fact that −∂x(x∂xu(x)) = f(x), we finally have

u(x0) =

∫ 2

1

G(x, x0)f(x)dx− 2∂xG(2, x0)b+ ∂xG(1, x0)a.
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(ii) Compute G(x, x0) for all x, x0 ∈ (1, 2).

Solution: For all x 6= x0 we have

−∂x(x∂xG(x, x0)) = 0.

The solution is

G(x, x0) =

{
a log(x) + b if 1 < x < x0

c log(x) + d if x0 < x < 2

The boundary conditions give b = 0 and d = −c log(2); as a result,

G(x, x0) =

{
a log(x) if 1 < x < x0

c log(x/2) if x0 < x < 2

G must be continuous at x0,

a log(x0) = c log(x0)− c log(2)

and must satisfy the gap condition

−
∫ x0+ε

x0−ε
∂x(x∂xG(x, x0))dx = 1, ∀ε > 0.

This gives

−x0

(
∂xG(x+

0 , x0)−G(x−0 , x0)
)

= 1

−x0(
c

x0
− a

x0
) = 1

This gives
a− c = 1.

In conclusion log(x0) = −c log 2 and

c = − log(x0)/ log(2), a = 1− log(x0)/ log(2) = log(2/x0)/ log(2).

This means

G(x, x0) =

{
log(2/x0)

log(2) log(x) if 1 < x < x0

log(x0)
log(2) log(2/x) if x0 < x < 2

Question 105: Consider the equation u′(x) + u = f(x) for x ∈ (0, 1) with u(0) = a. Let
G(x, x0) be the associated Green’s function. (Pay attention to the number of derivatives).
(a) Give the equation and boundary condition defining G and give an integral representation
of u(x0) in terms of G, f and the boundary data a. (Do not compute G.)

Solution: The Green’s function is defined by

−G′(x, x0) +G(x, x0) = δ(x− x0), G(1, x0) = 0.

We multiply the equation by u and we integrate over (0, 1) (in the distribution sense),∫ 1

0

−G′(x, x0)u(x)dx+

∫ 1

0

G(x, x0)u(x)dx = u(x0).

We integrates by parts and we obtain,

u(x0) =

∫ 1

0

G(x, x0)(u′(x) + u(x))dx−G(1, x0)u(1) +G(0, x0)u(0)
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Then, using the fact that u′ + u = f and using the boundary conditions for G and u, we obtain

u(x0) =

∫ 1

0

G(x, x0)f(x)dx+ aG(0, x0). ∀x0 ∈ (0, 1).

(b) Compute G(x, x0).

Solution: For x < x0 and x0 > x we have

−G′(x, x0) +G(x, x0) = 0.

The solution is

G(x, x0) =

{
αex for x < x0

βex for x > x0.

The boundary condition G(1, x0) = 0 implies β = 0.

For every ε > 0 we have

1 =

∫ x0+ε

x0−ε
(−G′(x, x0) +G(x, x0))dx

= G(x0 − ε, x0)−G(x0 + ε, x0) +

∫ x0+ε

x0−ε
G(x, x0)dx

The term Rε =
∫ x0+ε

x0−ε G(x, x0)dx can be bounded as follows:

|Rε| ≤ 2ε max
x∈[0,1]

|G(x, x0)| = 2εαex0 .

Clearly Rε goes to 0 with ε. As a result we obtain the jump condition

1 = G(x−0 , x0)−G(x+
0 , x0) = αex0 .

This implies
α = e−x0 .

Finally

G(x, x0) =

{
ex−x0 for x < x0

0 for x > x0.

Question 106: Consider the equation −∂x(x∂xu(x)) = f(x) for all x ∈ (1, 2) with u(1) = a
and u(2) = b. Let G(x, x0) be the associated Green’s function.
(i) Give the equation and boundary conditions satisfied byG and give the integral representation
of u(x0) for all x0 ∈ (1, 2) in terms of G, f , and the boundary data. (Do not compute G in this
question).

Solution: We have a second-order PDE and the operator is clearly self-adjoint. The Green’s function
solves the equation

−∂x(x∂xG(x, x0)) = δ(x− x0), G(1, x0) = 0, G(2, x0) = 0.

We multiply the equation by u and integrate over the domain (1, 2) (in the distribution sense).

〈δ(x− x0), u〉 = u(x0) = −
∫ 2

1

∂x(x∂xG(x, x0))u(x)dx.

We integrate by parts and we obtain,

u(x0) =

∫ 2

1

x∂xG(x, x0)∂xu(x)dx− [x∂xG(x, x0)u(x)]21

= −
∫ 2

1

G(x, x0)∂x(x∂xu(x))dx− 2∂xG(2, x0)u(2) + ∂xG(1, x0)u(1).
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Now, using the boundary conditions and the fact that −∂x(x∂xu(x)) = f(x), we finally have

u(x0) =

∫ 2

1

G(x, x0)f(x)dx− 2∂xG(2, x0)b+ ∂xG(1, x0)a.

(ii) Compute G(x, x0) for all x, x0 ∈ (1, 2).

Solution: For all x 6= x0 we have

−∂x(x∂xG(x, x0)) = 0.

The solution is

G(x, x0) =

{
a log(x) + b if 1 < x < x0

c log(x) + d if x0 < x < 2

The boundary conditions give b = 0 and d = −c log(2); as a result,

G(x, x0) =

{
a log(x) if 1 < x < x0

c log(x/2) if x0 < x < 2

G must be continuous at x0,

a log(x0) = c log(x0)− c log(2)

and must satisfy the gap condition

−
∫ x0+ε

x0−ε
∂x(x∂xG(x, x0))dx = 1, ∀ε > 0.

This gives

−x0

(
∂xG(x+

0 , x0)−G(x−0 , x0)
)

= 1

−x0(
c

x0
− a

x0
) = 1

This gives
a− c = 1.

In conclusion log(x0) = −c log 2 and

c = − log(x0)/ log(2), a = 1− log(x0)/ log(2) = log(2/x0)/ log(2).

This means

G(x, x0) =

{
log(2/x0)

log(2) log(x) if 1 < x < x0

log(x0)
log(2) log(2/x) if x0 < x < 2

Question 107: Consider the equation ∂xxu(x) = f(x), x ∈ (0, L), with u(0) = a and ∂xu(L) =
b.
(a) Compute the Green’s function of the problem.

Solution: Let x0 be a point in (0, L). The Green’s function of the problem is such that

∂xxG(x, x0) = δx0
, G(0, x0) = 0, ∂xG(L, x0) = 0.

The following holds for all x ∈ (0, x0):

∂xxG(x, x0) = 0.

This implies that G(x, x0) = ax + b in (0, x0). The boundary condition G(0, x0) = 0 gives b = 0.
Likewise, the following holds for all x ∈ (x0, L):

∂xxG(x, x0) = 0.
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This implies that G(x, x0) = cx + d in (x0, L). The boundary condition ∂xG(L, x0) = 0 gives
c = 0. The continuity of G(x, x0) at x0 implies that ax0 = d. The condition∫ ε

−ε
∂xxG(x, x0)dx = 1, ∀ε > 0,

gives the so-called jump condition: ∂xG(x+
0 , x0) − ∂xG(x−0 , x0) = 1. This means that 0 − a = 1,

i.e., a = −1 and d = −x0. In conclusion

G(x, x0) =

{
−x if ≤ x ≤ x0,

−x0 otherwise.

(b) Give the integral representation of u using the Green’s function.

Solution: Let x0 be a point in (0, L). The definition of the Dirac measure at x0 is such that

u(x0) = 〈δx0
, u〉 = 〈∂xxG(·, x0), u〉

= −
∫ L

0

∂xG(x, x0)∂xu(x)dx+ [∂xG(x, x0)u(x)]
L
0

=

∫ L

0

G(x, x0)∂xxu(x)dx− [G(x, x0)∂xu(x)]
L
0 + [∂xG(x, x0)u(x)]

L
0

=

∫ L

0

G(x, x0)f(x)dx−G(L, x0)∂xu(L) +G(0, x0)∂xu(0) + ∂xG(L, x0)u(L)− ∂xG(0, x0)u(0).

This finally gives the following representation of the solution:

u(x0) =

∫ L

0

G(x, x0)f(x)dx−G(L, x0)b− ∂xG(0, x0)a


