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8 Greens function

Question 101: Let €2 be a three-dimensional domain and consider the PDE
V?u=f(z), z€Q, with wu(z)=~h(z) on the boundary of Q, say I'.

Let G(z,x) be the Green’s function of this problem (the exact expression of G does not matter;
just assume that G is known). Give a representation! of u(z) in terms of G, f and h.

Solution: By definition
V2G(x,20) = 6(x —x0), 2€Q, with G(z,20)=0 z€T.

Then using the integration by parts formula, we obtain

/Q w(@)V2(Glz, 70))dz = /Q V2 (u(2)) Gz, wo)da+ /

r

()0, (G, o)) dz— / Oy (u(2))G (&, 20) da.
I
which can also be rewritten

u(zo) /f (x,z0 dw—i—/rh(gc)an(G(x,xo))dw.

Question 102: Let f be a smooth function in [0, 1]. Consider the PDE
u— Oggu = f(z), z€(0,1), Orpu(l) +u(l) =2, —0,u(0) +u(0) = 1.

What PDE and which boundary conditions must satisfy the Green function, G(z,xo), (DO
NOT compute the Green function)? Give the integral representation of u assuming G(z, x¢) is
known. Fully justify your answer.

Solution: Multiply the equation by G(x, o) and integrate over (0,1):

/ f(@)G(x,x0)dx _/0 (u(z) — Oppu(x))G(x,x0)dx
1
= /0 u(x)G(x, xo) + Oru(x)0,G(x, xo)dx — O,u(1)G(1, zg) + O,u(0)G(0, xo)

= /0 w(z)(G(z,x0) — 020G (2, x0))dx + u(1)0, G(1, 29) — u(0)0.G(0, z¢)
— 0,u(1)G(1,20) + 0,u(0)G(0, z0)
= /0 w(x)(G(x, x0) — OpeG(x, x0))dx + u(1)0,G(1, o) — u(0)0,G(0, z9)

(u(1) =2)G(1, x0) + (u(0) = EG(0, z0)

1
+u(1)(G(L, ) + 2 G (1, 20) + u(0) (G(0, 20) — ,G(0, 20)) — 2G(1, x0) — G(0, 20)

If we define G(z,z) so that
G(z,x0) — 022G (2, 20) = d(x — x0), G(1,z0) + 0:G(1,29) = 0, G(0,z9) — 0,G(0,x9) =0,

then u(zg), 2o € (0,1), has the following representation

u(zg) / f(@)G(z, z0)dx + 2G(1, zo) + G(0, ), Vo € (0,1).

'Hint: use [o vV2(¢) = [o, V(%) + [1 ¥On(d) — [ On ()
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Question 103: Consider the equation u/(z) + u = f(x) for x € (0,1) with u(0) = a. Let
G(z, ) be the associated Green’s function. (Pay attention to the number of derivatives).

(a) Give the equation and boundary condition defining G and give an integral representation
of u(xg) in terms of G, f and the boundary data a. (Do not compute G.)

Solution: The Green’s function is defined by
~G'(z,20) + G(x,10) = 0(x — 10), G(1,20) = 0.
We multiply the equation by u and we integrate over (0, 1) (in the distribution sense),
1 1
/ fG’(x,xo)u(:z:)der/ G(z, zo)u(zr)der = u(zo).
0 0
We integrates by parts and we obtain,
1
u(xo) = / G(z,z0) (v (z) + u(z))dz — G(1, 20)u(1) + G(0, 20)u(0)
0

Then, using the fact that ' + v = f and using the boundary conditions for G' and u, we obtain

u(zo) :/0 G(z,z0) f(z)dx + 2G(0,z0). Vxo € (0,1).
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(b) Compute G(z, xg).

Solution: For z < zy and zy > = we have

—G'(z,20) + G(z,x0) = 0.

The solution is

T for x < xo

Be*  for x > xg.

G(z, 1) = {ae
The boundary condition G(1,z¢) = 0 implies 8 = 0.

For every ¢ > 0 we have

xo+e
1= / (—=G'(z,20) + G(z,20))dz

xo+e€
= G(xo — €,x0) — G(zo + €,T0) —|—/ G(z,z0)dx

xrog—€

The term R, = fr°+EG(x,x0)dx can be bounded as follows:

Xog—E€

|R| < 2¢ max |G(x,x0)| = 2eqe™.
z€[0,1]

)

Clearly R, goes to 0 with €. As a result we obtain the jump condition
1=G(xy,70) — G(ag,w0) = ae™.
This implies

Finally
e % forx < xo

G(z, 1) = {

0 for z > xg.

Question 104: Consider the equation —9,(zd,u(x)) = f(z) for all x € (1,2) with u(1) = a
and u(2) = b. Let G(x,x0) be the associated Green’s function.

(i) Give the equation and boundary conditions satisfied by G' and give the integral representation
of u(zg) for all g € (1,2) in terms of G, f, and the boundary data. (Do not compute G in this
question).

Solution: We have a second-order PDE and the operator is clearly self-adjoint. The Green's function
solves the equation

=0, (20, G(x,20)) = 6(x — x9), G(l,x0) =0, G(2,29)=0.

We multiply the equation by u and integrate over the domain (1,2) (in the distribution sense).
2
(0(z — z0),u) = u(zrg) = —/ 05 (20, G (x, o) )u(z)de.
1
We integrate by parts and we obtain,
2
u(xg) = / 20,G (2, 20)0pu(x)dz — [20,G(z, zo)u(x)]?
1
2
= —/ G(,20) 0z (x0pu(z))da — 20, G(2, 20)u(2) + 0, G(1, z¢)u(l).
1
Now, using the boundary conditions and the fact that —3, (zd,u(x)) = f(x), we finally have

u(zg) = /12 G(z, o) f(z)dr — 20;G(2, 20)b + 0:G(1, z¢)a.
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(ii) Compute G(z,zo) for all z,z¢ € (1,2).

Solution: For all = # 2y we have
=05 (20, G(x, x0)) = 0.

The solution is
alog(z)+b ifl<z<uzg

clog(z)+d ifaxg<z<2

G(z,z0) = {

The boundary conditions give b = 0 and d = —clog(2); as a result,

alog(z) if 1 <z <z
clog(z/2) ifxg <z <2

G(x,x9) = {

GG must be continuous at xg,
alog(zg) = clog(xg) — clog(2)

and must satisfy the gap condition

$0+E
—/ 05 (20, G(x, x0))dz = 1, Ve > 0.

zo—e
This gives
—xo ((%cG(:ca',xo) - G(zg,m0)) =1
c a
—r(— — 2y =1
CEO(IO $0>
This gives
a—c=1.
In conclusion log(xg) = —clog?2 and
¢ = —log(wo)/10g(2), a =1 - log(xo)/log(2) = log(2/z0); log(2).
This means

log(2/0) ,
G(x,z0) = { g log(z) if1 <z <o

log(z .
ng((;)) log(2/z) ifzg <z <2

Question 105: Consider the equation u/(z) +u = f(x) for x € (0,1) with «(0) = a. Let
G(z, o) be the associated Green’s function. (Pay attention to the number of derivatives).
(a) Give the equation and boundary condition defining G and give an integral representation

of u(xg) in terms of G, f and the boundary data a. (Do not compute G.)

Solution: The Green'’s function is defined by

~G'(z,20) + G(x,10) = 0(x — 10), G(1,20) = 0.

We multiply the equation by u and we integrate over (0,1) (in the distribution sense),

1 1
/ —G'(z,z0)u(z)dz + / G(z, zo)u(zr)der = u(zo).
0 0

We integrates by parts and we obtain,

u(xo) = /0 G(x,20) (W (z) + u(x))dz — G(1, z0)u(1) + G(0, z0)u(0)
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Then, using the fact that v’ + u = f and using the boundary conditions for G and u, we obtain

1
u(zo) :/0 G(z,z0) f(z)dx + aG(0,20). Vzo € (0,1).

(b) Compute G(z, xo).

Solution: For x < zg and ¢ > = we have

—G'(z,z0) + G(x,20) = 0.

The solution is

T forx < xg

pe*  for x > xg.

ae

G(z,z9) = {

The boundary condition G(1, ) = 0 implies 5 = 0.

For every ¢ > 0 we have

xo+e€
1= / (=G (z,x0) + G(z,20))dz

xo+e€
= G(xo — €,x9) — G(zg + €, 20) + / G(z,xo)dx
Trog—E€
The term R, = [*°7° G(z, z¢)dz can be bounded as follows:

xTrog—€E

|R:| < 2¢ max |G(x,x0)| = 2eqe™.
z€l0,1]

Clearly R, goes to 0 with €. As a result we obtain the jump condition
1=G(zy,x0) — G(:L'a',xo) = ae™.

This implies

Finally
e*~%0  for x < xg

G(z,zg) = {

0 for z > zg.

Question 106: Consider the equation —0,(zd,u(x)) = f(z) for all x € (1,2) with u(1) = a
and u(2) = b. Let G(x,x9) be the associated Green’s function.

(i) Give the equation and boundary conditions satisfied by G and give the integral representation
of u(xg) for all zg € (1,2) in terms of G, f, and the boundary data. (Do not compute G in this
question).

Solution: We have a second-order PDE and the operator is clearly self-adjoint. The Green's function
solves the equation

=0, (20, G(x,20)) = 6(x — ), G(l,z0) =0, G(2,z9)=0.

We multiply the equation by u and integrate over the domain (1,2) (in the distribution sense).

2
(0(z — z0),u) = u(zro) = —/ 05 (20, G (x, o) )u(zr)de.
1
We integrate by parts and we obtain,
2
u(zo) = / 20,G (2, 20)0pu(x)dx — [20,G(z, zo)u(x)]?
1

- _ /12 G(x,10)0, (20 u(x))dr — 20, G (2, xo)u(2) + 0, G(1, z0)u(l).
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Now, using the boundary conditions and the fact that —9, (zd,u(z)) = f(x), we finally have

u(wo) = /1 Gla, 20) f()dx — 20,G(2, 70)b+ D, G(1, 20)a.

(ii) Compute G(x,xg) for all z,zy € (1,2).

Solution: For all = # 2y we have

— 02 (20, G(x,20)) = 0.

The solution is
alog(z)+b ifl<z<uxzg

clog(z)+d ifzxg<z<2

G(z, o) = {

The boundary conditions give b = 0 and d = —clog(2); as a result,

G( ) alog(z) if 1 <z <z
x,x0) = _
0 clog(z/2) ifxo <z <2

G must be continuous at xg,
alog(zg) = clog(zg) — clog(2)

and must satisfy the gap condition

xo+e€
7/ 02 (20, G(x, x0))dz = 1, Ve > 0.

0—€
This gives

—z0 (0,G(xg ,20) — G(zg ,20)) =1

c a
e — 2y =1
mo(wo wo)
This gives
a—c=
In conclusion log(xzg) = —clog2 and
¢ = —log(z0)/1og(2), @ = 1—1log(zo)/log(2) = log(2/0)/log(2).

This means

108(2/20) 100(2) ifl <z <2
G(x,mo):{ log(3) 108(7) 0

l'fogééo)) log(2/x) ifxg <z <2

Question 107: Consider the equation d,,u(x) = f(x), x € (0, L), with u(0) = a and d,u(L) =
b.
(a) Compute the Green’s function of the problem.

Solution: Let z( be a point in (0, L). The Green's function of the problem is such that
022G (2, %0) = 03y, G(0,29) =0, 0,G(L,x0)=0.
The following holds for all z € (0, zo):
022G (x,29) = 0.

This implies that G(z,2¢) = ax + b in (0,20). The boundary condition G(0,z9) = 0 gives b = 0.
Likewise, the following holds for all = € (x, L):

022G (2, 20) = 0.
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This implies that G(x,x) = cx + d in (x0,L). The boundary condition 9,G(L,xq) = 0 gives
¢ = 0. The continuity of G(x, () at xo implies that azg = d. The condition

/ Oz G(x, 20)dx = 1, Ve > 0,

gives the so-called jump condition: 0,G(x{,2¢) — .G (25 ,20) = 1. This means that 0 —a = 1,
i.,e., a=—1and d = —xg. In conclusion

-z if <z <,

G(z,mg) = {

—xp otherwise.

(b) Give the integral representation of u using the Green’s function.

Solution: Let xy be a point in (0, L). The definition of the Dirac measure at zg is such that
w(@0) = {02y, u) = (O2aG(+; 20), w)
L
_ / 0, G, 20)Duu(x)dz + [0,G (2, o) ()]
0
L
- / G, 0)Bppu(x)dz — [G(x, 20)dpu(x)]y + [0.G(x, zo)u(z)]y
0
L
= / G(x,0) f(x)dz — G(L, 20)0pu(L) + G(0,20)05u(0) + :G(L, wo)u(L) — 0:G(0, xo)u(0).
0

This finally gives the following representation of the solution:

L
u(xg) = /0 G(z, o) f(x)dx — G(L,x0)b — 0,G(0,x0)a




