LAST NAME: Key	FIRST NAME:	Quiz 5
MATH 602, Differential Equations	Prof: Dr. Ac	dam Larios
	orized. Show all your work in the blank spa	ace you are
	s without adequate justification will not reco	
	$\mathcal{F}[f] = F(\omega) = \int_{-\infty}^{\infty} f(x)e^{i\omega x} dx$	
Inverse Fourier Transform of $F(\omega)$:	$\mathcal{F}^{-1}[F] = f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{-i\omega x} d\omega$	
	on $f(x) = 5 + \cos(3x) + \sin(7x)$. Find its Fo	
	On't confuse this with the Fourier transform	i!) HINT:
This can be done with very little	WOLK:	0 -01
hee $B_n = \frac{1}{\pi \pi} \int_{\mathbb{R}}^{\mathbb{R}} f(x) \sin(nx) dx$	and $\int_{-\pi}^{\pi} \cos(nx) \sin(mx) dx =$	0 tor n-0,1,3
e have Bo=0, B3=0, B7	= 1, so the sine series is	just one term
	5;x(7x)	
answer in one sentence.	n part (a) equal to it's Fourier sine series? Ju	
Since F(=0) = 6	and f(T)=4 = f(0), the by a theorem in rection 3.3.	f(x) does not
equal its sine series	, by a theorem in rection 3.3.	
2. (3 points) Recall that if $z = a + ba$	is a complex number then its complex com	niugoto ia
$z = u - u$. Let $r(\omega)$ be the Fourier tr	cansform of $f(x)$. Show that $\overline{F(\omega)} = F(-\omega)$.	LAssume FCR) is
	_ 600	real.
f(w) -] ~ f(x) e dx	- J-00 f(x) e' dx.	
fix) real > fix) = fr	x). Also einx = Cos(wx)+	75in(wx)
	$= \cos(wx) - 1$	isin (wx) = - 7 wx
Thus F(w) = 5 - of the riwx dx =	F(-w)	
3. (4 points) If $F(\omega)$ is the Fourier trans		

3. (4 points) If $F(\omega)$ is the Fourier transform of f(x), show that $-i\frac{dF}{d\omega}$ is the Fourier transform of xf(x).

$$\frac{dF}{d\omega} = \frac{d\int_{-\infty}^{\infty} f(x) e^{i\omega x} dx}{\int_{-\infty}^{\infty} f(x) e^{i\omega x} dx} = \int_{-\infty}^{\infty} f(x) \frac{d}{d\omega} \left(e^{i\omega x} \right) dx = \lim_{N \to \infty} \int_{-\infty}^{\infty} \frac{dx}{dx}$$

$$\frac{dW}{d\omega} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) e^{i\omega x} dx = \int_{-\infty}^{$$

4. Consider the following heat equation problem, with periodic boundary conditions on $[-\pi, \pi]$:

$$\begin{cases} u_t = k y_{\text{obs}}, & k u_{\text{max}} \\ u(x,0) = u_0, \end{cases}$$

Suppose $u = \sum_{n=-\infty}^{\infty} c_n(t)e^{inx}$.

(a) (2 points) Find an ordinary differential equation satisfied by $c_{10}(t)$.

Plug in series to equation:

$$\sum_{n=-\infty}^{\infty} c_n(t) e^{inx} = k \sum_{n=-\infty}^{\infty} (in)^2 c_n(t) e^{inx} = \sum_{n=-\infty}^{\infty} -1 n^2 k c_n(t) e^{inx}$$

Equate coefficients:
$$C_n'(t) = -kn^2 c_n(t)$$

C100(t) = -100kg(8)

(b) (2 points) Solve for $c_{10}(t)$ in terms of $c_{10}(0)$.

Solve the ODE:

$$C_{100}(t) = C_{00}(t) = C_{00}(t) = C_{00}(t) = C_{00}(t) = C_{00}(t)$$

$$C_{10}(0) = C_{0}(0) = C_{0}(0)$$

$$C_{10}(t) = C_{10}(0) e^{-100kt}$$