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M602: Methods and Applications of Partial Differential Equations. Final TEST, Dec, 2013. Notes,
books, and calculators are not authorized. Show all your work in the blank space you are given on
the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Here are some formulae that you may want to use:

F(f)(ω)
def
=

1

2π

∫ +∞

−∞
f(x)eiωxdx, F−1(f)(x) =

∫ +∞

−∞
f(ω)e−iωxdω, F(f ∗ g) = 2πF(f)F(g), (1)

F(Sλ(x)) =
1

π

sin(λω)

ω
, where Sλ(x) =

{
1 if |x| ≤ λ
0 otherwise

(2)

The implicit representation of the solution to the equation ∂tv + ∂xq(v) = 0, v(x, 0) = v0(x), is

X(s, t) = q′(v0(s))t+ s; v(X(s, t), t) = v0(s). (3)

Question 1: Consider the telegraph equation ∂ttu + (α + β)∂tu + αβu − c2∂xxu = 0 with α, β ≥ 0, u(x, 0) =
f(x), ∂tu(x, 0) = g(x), x ∈ R, t > 0 and boundary condition at infinity u(±∞, t) = 0. Show that E(t) :=∫ +∞
−∞

1
2

(
(∂tu(x, t))2 + c2(∂xu(x, t))2 + αβ(u(x, t))2

)
dx decreases in time. (Hint: Energy argument with ∂tu.)

Solution: We test the equation with ∂tu and integrate over R,∫
R

(
∂t(

1

2
(∂tu)2) + (α+ β)(∂tu)2 + αβ∂t(

1

2
u2)

)
dx− c2

∫
R
∂xxu(x, t)∂tu(x, t)dx = 0,

where we used the product rule, 2ψ(γ)∂γψ(γ) = ∂γ(ψ2(γ)). Integration by parts in the last integral gives∫
R

(
∂t(

1

2
(∂tu)2) + (α+ β)(∂tu)2 + αβ∂t(

1

2
u2)

)
dx+ c2

∫
R
∂xu(x, t)∂t∂xu(x, t)dx = 0,

where we used the boundary condition at infinity u(±∞, t) = 0. This means that∫
R

(
∂t(

1

2
(∂tu)2) + (α+ β)(∂tu)2 + αβ∂t(

1

2
u2) + c2∂t(

1

2
(∂xu)2)

)
dx = 0.

After exchanging the time derivative and the space integral, we have

∂t

∫
R

(
1

2
(∂tu)2 + αβ

1

2
u2 + c2

1

2
(∂xu)2

)
dx = −(α+ β)

∫
R

(∂tu)2dx,

which means

∂tE(t) = −(α+ β)

∫
R

(∂tu)2dx ≤ 0,

i.e., E(t) decreases in time.
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Question 2: Let d be positive integer and let u : Rd×R+ −→ R be the solution to the nonlinear PDE ∂tu(x, t)−
a∆u(x, t) + b(∇u(x, t))·(∇u(x, t)) = 0, with u(x, 0) = f(x), where a > 0 and b 6= 0 are real numbers, and f(x) is

a smooth function. Let v(x, t) = e−
b
au(x,t). (i) Compute ∇v(x, t) and ∇·(∇v(x, t)) (Hint: compute ∂xi

v(x, t) for

i = 1, . . . , d, then
∑d
i=1 ∂xixi

v(x, t). It is the same question as question 1 in mdt1; it is worded differently.)

Solution: The chain rule gives

∂xi
v(x, t) = − b

a
e−

b
au(x,t)∂xi

u(x, t),

and
d∑
i=1

∂xixi
v(x, t) = − b

a
e−

b
au(x,t)

d∑
i=1

∂xixi
u(x, t) +

b2

a2
e−

b
au(x,t)

d∑
i=1

∂xi
u(x, t)∂xi

u(x, t).

This implies that

∇v(x, t) = − b
a

e−
b
au(x,t)∇u(x, t),

and

∆v(x, t) = − b
a

e−
b
au(x,t)∆u(x, t) +

b2

a2
e−

b
au(x,t)(∇u(x, t))·(∇u(x, t)).

(ii) Compute ∂tv(x, t), ∂tv(x, t)− a∆v(x, t), and v(x, 0).

Solution: Using again the chain rule we obtain

∂tv(x, t) = − b
a

e−
b
au(x,t)∂tu(x, t).

Combining the above results gives

∂tv(x, t)− a∆v(x, t) = − b
a

e−
b
au(x,t) (∂tu(x, t)− a∆u(x, t) + b(∇u(x, t))·(∇u(x, t))) = 0

i.e., v solves the heat equation ∂tv(x, t)− a∆v(x, t) = 0 with initial condition v(x, 0) = e−
b
a f(x).

(iii) Recall that the solution to the heat equation ∂tφ(x, t)− a∆φ(x, t) = 0 with initial condition φ(x, 0) = ψ0(x)

is given by ψ0(x)(4πat)−d/2
∫
Rd e−

‖x−y‖2
4at dy. Give the integral representation of u(x, t) in terms of a, b, and f .

Solution: Since ∂tv(x, t)− a∆v(x, t) = 0 with initial condition v(x, 0) = e−
b
a f(x), the integral representation of the

function u is then given by

u(x, t) = −a
b

log(v(x, t)), with, v(x, t) = e−
b
a f(x)(4πat)−d/2

∫
Rd

e−
‖x−y‖2

4at dy
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Question 3: Consider the telegraph equation ∂ttu+2α∂tu+α2u− c2∂xxu = 0 with α ≥ 0, u(x, 0) = 0, ∂tu(x, 0) =
g(x), x ∈ R, t > 0 and boundary condition at infinity u(±∞, t) = 0. Solve the equation by the Fourier transform
technique. (Hint: the solution to the ODE φ′′(t) + 2αφ′(t) + (α2 + λ2)φ(t) = 0 is φ(t) = e−αt(a cos(λt) + b sin(λt))

Solution: Applying the Fourier transform with respect to x to the equation, we infer that

0 = ∂ttF(u)(ω, t) + 2α∂tF(u)(ω, t) + α2F(u)(ω, t)− c2(−iω)2F(u)(ω, t)

= ∂ttF(u)(ω, t) + 2α∂tF(u)(ω, t) + (α2 + c2ω2)F(u)(ω, t)

Using the hint, we deduce that

F(u)(ω, t) = e−αt(a(ω) cos(ωct) + b(ω) sin(ωct)).

The initial condition implies that a(ω) = 0 and F(g)(ω) = ωcb(ω); as a result, b(ω) = F(g)(ω)/(ωc) and

F(u)(ω, t) = e−αtF(g)
sin(ωct)

ωc
.

Then using (2), we have

F(u)(ω, t) =
π

c
e−αtF(g)F(Sct).

The convolution theorem implies that

u(x, t) = e−αt
1

2c
g ∗ Sct = e−αt

1

2c

∫ ∞
−∞

g(y)Sct(x− y)dy.

Finally the definition of Sct implies that Sct(x− y) is equal to 1 if −ct < x− y < ct and is equal zero otherwise, which
finally means that

u(x, t) = e−αt
1

2c

∫ x+ct

x−ct
g(y)dy.



Last name: name: 4

Question 4: Consider the equation −∂x((1+x)∂xu(x))+∂xu(x) = f(x), x ∈ (0, 1) with u(0) = α and −2∂xu(1)+
u(1) = β. Let G(x, x0) be the Green’s function. (i) Give the integral representation of u(x0) for all x0 ∈ (0, 1) in
terms of G, f , α and β and give the equation and boundary conditions that G must satisfy. Do not compute G at
this question. (Hint: The differential operator is not self-adjoint. You should find G(0, x0) = 0, ∂xG(1, x0) = 0).

Solution: We multiply the PDE by G(x, x0) and integrate by parts,∫ 1

0

f(x)G(x, x0)dx =

∫ 1

0

((1 + x)∂xu(x)∂xG(x, x0)− u(x)∂xG(x, x0)) dx+ [(−(1 + x)∂xu(x) + u(x))G(x, x0)]10

=

∫ 1

0

((1 + x)∂xu(x)∂xG(x, x0)− u(x)∂xG(x, x0)) dx+ βG(1, x0)− (−∂xu(0) + α)G(0, x0).

Since ∂xu(0) is not known, we must have G(0, x0) = 0. Then∫ 1

0

f(x)G(x, x0)dx =

∫ 1

0

(−u(x)∂((1 + x)∂xG(x, x0))− u(x)∂xG(x, x0)) dx+ βG(1, x0) + [(1 + x)u(x)∂xG(x, x0)]10

=

∫ 1

0

−u(x) (∂((1 + x)∂xG(x, x0)) + ∂xG(x, x0)) dx+ βG(1, x0) + 2u(1)∂xG(1, x0)− α∂xG(0, x0).

Since u(1) is not known, we must have ∂xG(1, x0) = 0. Finally G must satisfy

−∂x((1 + x)∂xG(x, x0))− ∂xG(x, x0) = δ(x− x0), G(0, x0) = 0, ∂xG(1, x0) = 0,

and we have the following representation for u(x0),

u(x0) =

∫ 1

0

f(x)G(x, x0)dx− βG(1, x0) + α∂xG(0, x0).
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(ii) Compute G(x, x0) such that −∂x((1 + x)∂xG(x, x0)) − ∂xG(x, x0) = δ(x − x0), G(0, x0) = 0, ∂xG(1, x0) = 0,
for all x, x0 ∈ (0, 1). (Hint: observe that (1 + x)φ′(x) + φ(x) = ((1 + x)φ(x))′.)

Solution: For all x 6= x0 we have

−∂((1 + x)∂xG(x, x0))− ∂xG(x, x0) = −∂((1 + x)∂xG(x, x0) +G(x, x0)) = 0

Using the hint, this implies that

(1 + x)∂xG(x, x0) +G(x, x0) = ∂x((1 + x)G(x, x0)) = a,

In conclusion

G(x, x0) =

{
ax+b
1+x if x ≤ x0
cx+d
1+x if x0 ≤ x.

The boundary condition at 0 gives
G(0, x0) = 0 = b,

i.e., b = 0, G(x, x0) = ax
1+x if x ≤ x0. The boundary condition at 1 gives

∂xG(0, x0) =
c(1 + 0)− (c× 0 + d)× 1

(1 + 0)2
= 0,

i.e., c = d. G(x, x0) = c, if x0 ≤ x. We need to impose the continuity of G(x, x0) at x0,

ax0
1 + x0

= c,

which gives ax0 = c(1 + x0). The jump condition gives

1 = lim
ε→0

∫ x0+ε

x0−ε
(−∂x((1 + x)∂xG(x, x0)) + ∂xG(x, x0)) dx = (1 + x0)(∂xG(x−0 , x0)− ∂xG(x+0 , x0))

= (1 + x0)(
a(1 + x0)− ax0

(1 + x0)2
) =

a

1 + x0
.

In conclusion a = (1 + x0) and c = x0, Then

G(x, x0) =

{
x(1+x0)

1+x if x ≤ x0
x0 if x0 ≤ x.
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Question 5: Consider the conservation equation ∂tρ+ ∂x(sin(π2 ρ)) = 0, x ∈ R, t > 0, with initial data ρ0(x) = 0
if x < 0 and ρ0(x) = 1 if x > 0. Draw the characteristics and give the explicit representation of the solution.

Solution: The implicit representation of the solution to the equation ∂tρ+ ∂xq(ρ) = 0, ρ(x, 0) = ρ0(x), is

X(s, t) = q′(ρ0(s))t+ s; ρ(X(s, t), t) = ρ0(s). (4)

The explicit representation is obtained by expressing s in terms of X and t.
Case 1: s < 0, we have ρ0(s) = 0, q′(ρ0(s)) = π

2 cos(0) = π
2 , X = π

2 t+ s, which means s = X − π
2 t. Then

ρ(x, t) = 0 if x <
π

2
t.

Case 2: 0 < s, we have ρ0(s) = 1, q′(ρ0(s)) = π
2 cos(π2 ) = 0, X = s. Then

ρ(x, t) = 1 if 0 < x.

The characteristics cross in the region 0 < x < π
2 t; this means that there is a shock in this region.

The Rankin-Hugoniot formula gives the speed of the shock

dxs(t)

dt
=

sin(π2 )− sin(0)

1− 0
= 1.

The equation of the trajectory of the shock is xs(t) = t. Finally

ρ(x, t) =

{
0 if x < t,

1 if t < x.
(5)
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Question 6: Consider the conservation equation with flux q(ρ) = ρ3. Assume that the initial data is ρ0(x) = 2, if
x < 0, ρ0(x) = 1, if 0 < x < 1, and ρ0(x) = 0, if 1 < x. (i) Draw the characteristics

Solution: There are three families of characteristics.

Case 1: s < 0, X(s, t) = 12t+ s. In the x-t plane, these are lines with slope 1
12 .

Case 2: 0 < s < 1, X(s, t) = 3t+ s. In the x-t plane, these are lines with slope 1
3 .

Case 3: 1 < s, X(s, t) = s. In the x-t plane, these are vertical lines.

One shock forms between the two black characteristics and another forms between the two red characteristic (see figure).

(ii) Describe qualitatively the nature of the solution.

Solution: We have two shocks moving to the right. One shock forms between the two black characteristics and another
forms between the two red characteristic (see figure).

(iii) When and where does the left shock catch up with the right one?

Solution: The speeds of the shocks are

dx1(t)

dt
=

23 − 1

2− 1
= 7, and

dx2(t)

dt
=

1− 0

1− 0
= 1.

The location of the left shock at time t is x1(t) = 7t and that of the right shock is x2(t) = t+ 1. The two shocks are
at the same location when 7t = t+ 1, i.e., t = 1

6 ; the two shocks merge at x = 7
6 .

(iv) What is the speed of the shock once the two shocks have merged and what is the position of the shock as a
function of time?

Solution: When the shocks have merged the left state is ρ = 2 and the right state is ρ = 0; as a result the speed of
the shock is

dx3(t)

dt
=

23 − 0

2− 0
= 4,

and the shock trajectory is x3(t) = 4(t− 1
6 ) + 7

6 .
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(v) Draw precisely all the characteristics of the solution.

Solution: The three shocks are shown in color.

Question 7: Consider the following problem: Let f be a smooth function in [0, π], find u such that u+∂xxu = f(x),
x ∈ (0, π), u(π) = 0, u(0) = 0. (i) Under which condition does this problem have a solution.

Solution: Let us compute the null space of the operator L : {v ∈ C2(0, π) : v(π) = 0, v(0) = 0} 3 u 7−→
u(x) + ∂xxu(x) ∈ C0(0, π). Let N(L) be the null space. Let v ∈ N(L), then

v + ∂xxv = 0

which means that v = a cos(x) + b sin(x). The boundary conditions imply that a = 0; as a result N(L) = span(sin(x)),
i.e., N(L) is the one-dimensional vector space spanned by the function sin(x). Fredholm’s alternative implies that the
above problem has a solution only if

∫ π
0

sin(x)f(x)dx = 0.

(ii) Does the above problem have a solution for f(x) = cos(x)?

Solution: We need to compute
∫ π
0

sin(x) cos(x)dx,∫ π

0

sin(x) cos(x)dx =
1

2

∫ π

0

sin(2x)dx = 0.

The Fredholm alternative implies that the problem has a solution.


