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Notes, books, and calculators are not authorized. Show all your work in the blank space you are given
on the exam sheet. Answers with no justification will not be graded.

Question 1: Let u be a solution to the PDE ∂tu(x, t)+ 1
2∂xu

2(x, t)−ν∂xxu(x, t) = 0, x ∈ (−∞,+∞),

t > 0. (a) Let ψ(x, t) =
∫ x
−∞ ∂tu(ξ, t)dξ + 1

2u
2(x, t)− ν∂xu(x, t). Compute ∂xψ(x, t).

The definition of ψ implies that

∂xψ(x, t) = ∂x(

∫ x

−∞
∂tu(ξ, t)dx+

1

2
u2(x, t)− ν∂xu(x, t))

= ∂tu(x, t)x+
1

2
∂xu

2(x, t)− ∂xxu(x, t) = 0

i.e., ∂xψ(x, t) = 0. This means that ψ depends on t only.

(b) Let φ(x, t) := e−
1
2ν

∫ x
−∞ u(ξ,t)dξ. Compute ∂tφ, ∂xφ, and ∂xxφ.

The definition of φ, together with the chain rule, implies that

∂tφ(x, t) = ∂t

(
− 1

2ν

∫ x

−∞
u(ξ, t)dξ

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

=

(
− 1

2ν

∫ x

−∞
∂tu(ξ, t)dξ

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

and

∂xφ(x, t) = ∂x

(
− 1

2ν

∫ x

−∞
u(ξ, t)dξ

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

=

(
− 1

2ν
u(x, t)

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

and

∂xxφ(x, t) =

(
− 1

2ν
∂xu(x, t)

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ +

(
− 1

2ν
u(x, t)

)2

e−
1
2ν

∫ x
−∞ u(ξ,t)dξ
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(c) Compute ∂tφ− ν∂xxφ, assuming ψ(x, t) = 0.

The above computations give

−ν∂xxφ(x, t) = − 1

2ν

(
−ν∂xu(x, t) +

1

2
u2(x, t)

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

In conclusion

∂tφ− ν∂xxφ = − 1

2ν

(∫ x

−∞
∂tu(ξ, t)dξ +

1

2
u2(x, t)− ν∂xu(x, t)

)
e−

1
2ν

∫ x
−∞ u(ξ,t)dξ

= − 1

2ν
ψ(x, t)e−

1
2ν

∫ x
−∞ u(ξ,t)dξ.

This means ∂tφ− ν∂xxφ = 0.

Question 2: Consider the vibrating beam equation ∂ttu(x, t) + ∂xxxxu(x, t) = 0, x ∈ (−∞,+∞),
t > 0 with u(±∞, t) = 0, ∂xu(±∞, t) = 0, ∂xxu(±∞, t) = 0. Use the energy method to compute

∂t
∫ +∞
−∞ ([∂tu(x, t)]2 + [∂xxu(x, t)]2)dx. (Hint: test the equation with ∂tu(x, t)).

Using the hint we have

0 =

∫ +∞

−∞
(∂ttu(x, t)∂tu(x, t) + ∂xxxxu(x, t)∂tu(x, t))dx

Using the product rule, a∂ta = 1
2∂ta

2 where a = ∂tu(x, t), and integrating by parts two times (i.e.,
applying the fundamental theorem of calculus) we obtain

0 =

∫ +∞

−∞
(
1

2
∂t(∂tu(x, t))2 − ∂xxxu(x, t)∂t∂xu(x, t))dx

=

∫ +∞

−∞
(∂t

1

2
(∂tu(x, t))2 + ∂xxu(x, t)∂t∂xxu(x, t))dx.

We apply again the product rule a∂ta = 1
2∂ta

2 where a = ∂xxu(x, t),

0 =

∫ +∞

−∞
(∂t

1

2
(∂tu(x, t))2 +

1

2
∂t(∂xxu(x, t))2)dx.

Switching the derivative with respect to t and the integration with respect to x, this finally gives

0 =
1

2
∂t

∫ +∞

−∞
([∂tu(x, t)]2 + [∂xxu(x, t)]2)dx.
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Question 3: Let k, f : [−1,+1] −→ R be such that k(x) = 2, f(x) = 0 if x ∈ [−1, 0] and k(x) = 1,
f(x) = 2 if x ∈ (0, 1]. Consider the boundary value problem −∂x(k(x)∂xT (x)) = f(x) with T (−1) =
−2 and T (1) = 2.
(a) What should be the interface conditions at x = 0 for this problem to make sense?

The function T and the flux k(x)∂xT (x) must be continuous at x = 0. Let T− denote the solution
on [−1, 0] and T+ the solution on [0,+1]. One should have T−(0) = T+(0) and k−(0)∂xT

−(0) =
k+(0)∂xT

+(0), where k−(0) = 2 and k+(0) = 1.

(b) Solve the problem, i.e., find T (x), x ∈ [−1,+1].

On [−1, 0] we have k−(x) = 2 and f−(x) = 0 which implies −∂xxT−(x) = 0. This in turn implies
T−(x) = ax + b. The Dirichlet condition at x = −1 implies that T−(−1) = −2 = −a + b. This gives
a = b+ 2 and T−(x) = (b+ 2)x+ b.

We proceed similarly on [0,+1] and we obtain −∂xxT−(x) = 2, which implies that T+(x) = −x2 +cx+d.
The Dirichlet condition at x = 1 implies T+(1) = 2 = −1 + c + d. This gives c = 3 − d and T−(x) =
x2 + (3− d)x+ d.

The interface conditions T−(0) = T+(0) and k−(0)∂xT
−(0) = k+(0)∂xT

+(0) give b = d and 2(b+ 2) =
3− d, respectively. In conclusion b = − 1

3 , d = − 1
3 and

T (x) =

{
5
3x−

1
3 if x ∈ [−1, 0],

−x2 + 10
3 x−

1
3 if x ∈ [0, 1].

Question 4: Let CS(f) = π2

6 − 2(cos(x) − cos(2x)
22 + cos(3x)

32 − cos(4x)
42 . . .) be the Fourier cosine series

of the function f(x) := 1
2x

2 defined over [−π,+π].
(a) For which values of x in [−π,+π] does this series coincide with f(x)? (Explain).

The Fourier cosine series coincides with the function f(x) over the entire interval [−π,+π] since f is
smooth over [−π,+π] and f(−π) = f(+π).

(b) Compute the Fourier sine series, SS(x), of the function g(x) := x defined over [−π,+π].

We know from class that it is always possible to obtain a Fourier sine series by differentiating term by term
a Fourier cosine series, in other words

SS(x) = ∂xCS(
1

2
x2) = 2

(
sin(x)− sin(2x)

2
+

sin(3x)

3
− sin(4x)

4
. . .

sin(nx)

n
. . .

)
.
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(c) For which values of x ∈ [−π,+π] does the Fourier sine series of g coincide with g(x)?.

The Fourier sine series coincides with the function g(x) := x over the interval (−π,+π) since g is smooth
over [−π,+π]and g(0) = 0. The Fourier sine series of g is zero at ±π, and thus differs from g(±π).

Question 5: Using cylindrical coordinates and the method of separation of variables, solve the equa-
tion, 1

r∂r(r∂ru)+ 1
r2 ∂θθu = 0, inside the domain D = {θ ∈ [0, 32π], r ∈ [0, 3]}, subject to the boundary

conditions u(r, 0) = 0, u(r, 32π) = 0, u(3, θ) = 18 sin(2θ). (Give all the details.)

(1) We set u(r, θ) = φ(θ)g(r). This means φ′′ = −λφ, with φ(0) = 0 and φ( 3
2π) = 0, and r d

dr (r d
drg(r)) =

λg(r).

(2) The usual energy argument applied to the two-point boundary value problem

φ′′ = −λφ, φ(0) = 0, φ(
3

2
π) = 0,

implies that λ is non-negative. If λ = 0, then φ(θ) = c1 + c2θ and the boundary conditions imply
c1 = c2 = 0, i.e., φ = 0, which in turns gives u = 0 and this solution is incompatible with the boundary
condition u(3, θ) = 18 sin(2θ). Hence λ > 0 and

φ(θ) = c1 cos(
√
λθ) + c2 sin(

√
λθ).

(3) The boundary condition φ(0) = 0 implies c1 = 0. The boundary condition φ( 3
2π) = 0 implies√

λ 3
2π = nπ with n ∈ N \ {0}. This means

√
λ = 2

3n, n = 1, 2, . . ..

(4) From class we know that g(r) is of the form rα, α ≥ 0. The equality r d
dr (r d

dr r
α) = λrα gives

α2 = λ. The condition α ≥ 0 implies 2
3n = α =

√
λ. The boundary condition at r = 3 gives 18 sin(2θ) =

c23
2
3n sin( 2

3nθ) for all θ ∈ [0, 32π]. This implies n = 3 and c2 = 2.

(5) Finally, the solution to the problem is

u(r, θ) = 2r2 sin(2θ).
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Question 6: Let p, q : [−1,+1] −→ R be smooth functions. Assume that p(x) ≥ 0 and q(x) ≥ q0 for
all x ∈ [−1,+1], where q0 ∈ R. Consider the eigenvalue problem −∂x(p(x)∂xφ(x))+q(x)φ(x) = λφ(x),
supplemented with the boundary conditions φ(−1) = 0 and φ(1) = 0.
(a) Prove that it is necessary that λ ≥ q0 for a non-zero (smooth) solution, φ, to exist. (Hint:

q0
∫ +1

−1 φ
2(x)dx ≤

∫ +1

−1 q(x)φ2(x)dx.)

As usual we use the energy method. Let (φ, λ) be an eigenpair, then∫ +1

−1
(−∂x(p(x)∂xφ(x))φ(x) + q(x)φ2(x))dx = λ

∫ +1

−1
φ2(x)dx.

After integration by parts and using the boundary conditions, we obtain∫ +1

−1
(p(x)∂xφ(x)∂xφ(x) + q(x)φ2(x))dx = λ

∫ +1

−1
φ2(x)dx.

which, using the hint, can also be re-written∫ +1

−1
(p(x)∂xφ(x)∂xφ(x) + q0φ

2(x))dx ≤ λ
∫ +1

−1
φ2(x)dx.

Then ∫ +1

−1
p(x)(∂xφ(x))2dx ≤ (λ− q0)

∫ +1

−1
φ2(x)dx.

Assume that φ is non-zero, then

λ− q0 ≥
∫ +1

−1 p(x)(∂xφ(x))2dx∫ +1

−1 φ
2(x)dx

≥ 0,

which proves that it is necessary that λ ≥ q0 for a non-zero (smooth) solution to exist.

(b) Assume that p(x) ≥ p0 > 0 for all x ∈ [−1,+1] where p0 ∈ R+. Show that λ = q0 cannot be an

eigenvalue, i.e., prove that φ = 0 if λ = q0. (Hint: p0
∫ +1

−1 ψ
2(x)dx ≤

∫ +1

−1 p(x)ψ2(x)dx.)

Assume that λ = q0 is an eigenvalue. Then the above computation shows that

p0

∫ +1

−1
(∂xφ(x))2dx ≤

∫ +1

−1
p(x)(∂xφ(x))2dx = 0,

which means that
∫ +1

−1 (∂xφ(x))2dx = 0 since p0 > 0. As a result ∂xφ = 0, i.e., φ(x) = c where c is a
constant. The boundary conditions φ(−1) = 0 = φ(1) imply that c = 0. In conclusion φ = 0 if λ = q0,
thereby proving that (φ, q0) is not an eigenpair.
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Question 7: Use the Fourier transform technique to solve ∂tu(x, t)+sin(t)∂xu(x, t)+(2+3t2)u(x, t) =
0, x ∈ R, t > 0, with u(x, 0) = u0(x). (Use the shift lemma: F(f(x− β))(ω) = F(f)(ω)eiωβ and the

definition F(f)(ω) := 1
2π

∫ +∞
−∞ f(x)eiωxdx)

Applying the Fourier transform to the equation gives

∂tF(u)(ω, t) + sin(t)(−iω)F(u)(ω, t) + (2 + 3t2)F(u)(ω, t) = 0

This can also be re-written as follows:

∂tF(u)(ω, t)

F(u)(ω, t)
= iω sin(t)− (2 + 3t2).

Then applying the fundamental theorem of calculus between 0 and t, we obtain

log(F(u)(ω, t))− log(F(u)(ω, 0)) = −iω(cos(t)− 1)− (2t+ t3).

This implies

F(u)(ω, t) = F(u0)(ω)e−iω(cos(t)−1)e−(2t+t
3).

Then the shift lemma gives

F(u)(ω, t) = F(u0(x+ cos(t)− 1)(ω)e−(2t+t
3).

This finally gives

u(x, t) = u0(x+ cos(t)− 1)e−(2t+t
3).


