Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet. Answers with no justification will not be graded.

Question 1: Let u be a solution to the PDE $\partial_t u(x,t) + \frac{1}{2} \partial_x u^2(x,t) - \nu \partial_{xx} u(x,t) = 0, x \in (-\infty, +\infty)$, $t > 0$. (a) Let $\psi(x,t) = \int_{-\infty}^{x} \partial_t u(\xi, t) d\xi + \frac{1}{2} u^2(x,t) - \nu \partial_x u(x,t)$. Compute $\partial_x \psi(x,t)$.

The definition of ψ implies that

$$
\partial_x \psi(x,t) = \partial_x \left(\int_{-\infty}^x \partial_t u(\xi, t) dx + \frac{1}{2} u^2(x, t) - \nu \partial_x u(x, t) \right)
$$

$$
= \partial_t u(x,t) x + \frac{1}{2} \partial_x u^2(x,t) - \partial_{xx} u(x,t) = 0
$$

i.e., $\partial_x \psi(x, t) = 0$. This means that ψ depends on t only.

(b) Let $\phi(x,t) := e^{-\frac{1}{2\nu}\int_{-\infty}^{x}u(\xi,t)d\xi}$. Compute $\partial_t\phi$, $\partial_x\phi$, and $\partial_{xx}\phi$.

The definition of ϕ , together with the chain rule, implies that

$$
\partial_t \phi(x,t) = \partial_t \left(-\frac{1}{2\nu} \int_{-\infty}^x u(\xi, t) d\xi \right) e^{-\frac{1}{2\nu} \int_{-\infty}^x u(\xi, t) d\xi}
$$

$$
= \left(-\frac{1}{2\nu} \int_{-\infty}^x \partial_t u(\xi, t) d\xi \right) e^{-\frac{1}{2\nu} \int_{-\infty}^x u(\xi, t) d\xi}
$$

and

$$
\partial_x \phi(x,t) = \partial_x \left(-\frac{1}{2\nu} \int_{-\infty}^x u(\xi, t) \, d\xi \right) e^{-\frac{1}{2\nu} \int_{-\infty}^x u(\xi, t) \, d\xi}
$$
\n
$$
= \left(-\frac{1}{2\nu} u(x,t) \right) e^{-\frac{1}{2\nu} \int_{-\infty}^x u(\xi, t) \, d\xi}
$$

and

$$
\partial_{xx}\phi(x,t)=\left(-\frac{1}{2\nu}\partial_x u(x,t)\right)\mathrm{e}^{-\frac{1}{2\nu}\int_{-\infty}^x u(\xi,t)\mathrm{d}\xi}+\left(-\frac{1}{2\nu}u(x,t)\right)^2\mathrm{e}^{-\frac{1}{2\nu}\int_{-\infty}^x u(\xi,t)\mathrm{d}\xi}
$$

(c) Compute $\partial_t \phi - \nu \partial_{xx} \phi$, assuming $\psi(x, t) = 0$.

The above computations give

$$
-\nu \partial_{xx}\phi(x,t) = -\frac{1}{2\nu} \left(-\nu \partial_x u(x,t) + \frac{1}{2}u^2(x,t)\right) e^{-\frac{1}{2\nu}\int_{-\infty}^x u(\xi,t) d\xi}
$$

In conclusion

$$
\partial_t \phi - \nu \partial_{xx} \phi = -\frac{1}{2\nu} \left(\int_{-\infty}^x \partial_t u(\xi, t) d\xi + \frac{1}{2} u^2(x, t) - \nu \partial_x u(x, t) \right) e^{-\frac{1}{2\nu} \int_{-\infty}^x u(\xi, t) d\xi}
$$

=
$$
-\frac{1}{2\nu} \psi(x, t) e^{-\frac{1}{2\nu} \int_{-\infty}^x u(\xi, t) d\xi}.
$$

This means $\partial_t \phi - \nu \partial_{xx} \phi = 0$.

Question 2: Consider the vibrating beam equation $\partial_{tt}u(x,t) + \partial_{xxxx}u(x,t) = 0, x \in (-\infty, +\infty)$, $t > 0$ with $u(\pm \infty, t) = 0$, $\partial_x u(\pm \infty, t) = 0$, $\partial_{xx} u(\pm \infty, t) = 0$. Use the energy method to compute $\partial_t \int_{-\infty}^{+\infty} ([\partial_t u(x,t)]^2 + [\partial_{xx} u(x,t)]^2) dx$. (Hint: test the equation with $\partial_t u(x,t)$).

Using the hint we have

$$
0 = \int_{-\infty}^{+\infty} (\partial_{tt} u(x, t) \partial_t u(x, t) + \partial_{xxxx} u(x, t) \partial_t u(x, t)) \mathrm{d}x
$$

Using the product rule, $a\partial_t a = \frac{1}{2}\partial_t a^2$ where $a = \partial_t u(x,t)$, and integrating by parts two times (i.e., applying the fundamental theorem of calculus) we obtain

$$
0 = \int_{-\infty}^{+\infty} \left(\frac{1}{2}\partial_t(\partial_t u(x,t))^2 - \partial_{xxx}u(x,t)\partial_t\partial_x u(x,t)\right)dx
$$

=
$$
\int_{-\infty}^{+\infty} \left(\partial_t \frac{1}{2}(\partial_t u(x,t))^2 + \partial_{xx}u(x,t)\partial_t\partial_{xx}u(x,t)\right)dx.
$$

We apply again the product rule $a\partial_t a = \frac{1}{2}\partial_t a^2$ where $a = \partial_{xx}u(x,t)$,

$$
0 = \int_{-\infty}^{+\infty} (\partial_t \frac{1}{2} (\partial_t u(x,t))^2 + \frac{1}{2} \partial_t (\partial_{xx} u(x,t))^2) dx.
$$

Switching the derivative with respect to t and the integration with respect to x , this finally gives

$$
0 = \frac{1}{2}\partial_t \int_{-\infty}^{+\infty} ([\partial_t u(x,t)]^2 + [\partial_{xx} u(x,t)]^2) dx.
$$

Question 3: Let $k, f : [-1, +1] \longrightarrow \mathbb{R}$ be such that $k(x) = 2$, $f(x) = 0$ if $x \in [-1, 0]$ and $k(x) = 1$, $f(x) = 2$ if $x \in (0,1]$. Consider the boundary value problem $-\partial_x(k(x)\partial_x T(x)) = f(x)$ with $T(-1) =$ -2 and $T(1) = 2$.

(a) What should be the interface conditions at $x = 0$ for this problem to make sense?

The function T and the flux $k(x)\partial_x T(x)$ must be continuous at $x = 0$. Let T^- denote the solution on $[-1,0]$ and T^+ the solution on $[0,+1]$. One should have $T^-(0) = T^+(0)$ and $k^-(0)\partial_x T^-(0) = 0$ $k^+(0)\partial_x T^+(0)$, where $k^-(0) = 2$ and $k^+(0) = 1$.

(b) Solve the problem, i.e., find $T(x)$, $x \in [-1, +1]$.

On $[-1,0]$ we have $k^-(x) = 2$ and $f^-(x) = 0$ which implies $-\partial_{xx}T^-(x) = 0$. This in turn implies $T^-(x) = ax + b$. The Dirichlet condition at $x = -1$ implies that $T^-(-1) = -2 = -a + b$. This gives $a = b + 2$ and $T^{-}(x) = (b + 2)x + b$.

We proceed similarly on $[0, +1]$ and we obtain $-\partial_{xx}T^-(x) = 2$, which implies that $T^+(x) = -x^2 + cx + d$. The Dirichlet condition at $x = 1$ implies $T^+(1) = 2 = -1 + c + d$. This gives $c = 3 - d$ and $T^-(x) =$ $x^2 + (3 - d)x + d$.

The interface conditions $T^-(0) = T^+(0)$ and $k^-(0)\partial_x T^-(0) = k^+(0)\partial_x T^+(0)$ give $b = d$ and $2(b+2) = d$ $3-d$, respectively. In conclusion $b=-\frac{1}{3}$, $d=-\frac{1}{3}$ and

$$
T(x) = \begin{cases} \frac{5}{3}x - \frac{1}{3} & \text{if } x \in [-1, 0],\\ -x^2 + \frac{10}{3}x - \frac{1}{3} & \text{if } x \in [0, 1]. \end{cases}
$$

Question 4: Let $\text{CS}(f) = \frac{\pi^2}{6} - 2(\cos(x) - \frac{\cos(2x)}{2^2})$ $\frac{\sin(2x)}{2^2} + \frac{\cos(3x)}{3^2}$ $\frac{\sin(3x)}{3^2} - \frac{\cos(4x)}{4^2}$ $\frac{3(4x)}{4^2}$...) be the Fourier cosine series of the function $f(x) := \frac{1}{2}x^2$ defined over $[-\pi, +\pi]$.

(a) For which values of x in $[-\pi, +\pi]$ does this series coincide with $f(x)$? (Explain).

The Fourier cosine series coincides with the function $f(x)$ over the entire interval $[-\pi, +\pi]$ since f is smooth over $[-\pi, +\pi]$ and $f(-\pi) = f(+\pi)$.

(b) Compute the Fourier sine series, $SS(x)$, of the function $g(x) := x$ defined over $[-\pi, +\pi]$.

We know from class that it is always possible to obtain a Fourier sine series by differentiating term by term a Fourier cosine series, in other words

$$
SS(x) = \partial_x \text{CS}(\frac{1}{2}x^2) = 2\left(\sin(x) - \frac{\sin(2x)}{2} + \frac{\sin(3x)}{3} - \frac{\sin(4x)}{4} \dots \frac{\sin(nx)}{n} \dots\right)
$$

.

(c) For which values of $x \in [-\pi, +\pi]$ does the Fourier sine series of g coincide with $g(x)$?.

The Fourier sine series coincides with the function $g(x) := x$ over the interval $(-\pi, +\pi)$ since g is smooth over $[-\pi, +\pi]$ and $g(0) = 0$. The Fourier sine series of g is zero at $\pm \pi$, and thus differs from $g(\pm \pi)$.

Question 5: Using cylindrical coordinates and the method of separation of variables, solve the equation, $\frac{1}{r}\partial_r(r\partial_ru)+\frac{1}{r^2}\partial_{\theta\theta}u=0$, inside the domain $D=\{\theta\in[0,\frac{3}{2}\pi], r\in[0,3]\}$, subject to the boundary conditions $u(r, 0) = 0$, $u(r, \frac{3}{2}\pi) = 0$, $u(3, \theta) = 18\sin(2\theta)$. (Give all the details.)

(1) We set $u(r,\theta) = \phi(\theta)g(r)$. This means $\phi'' = -\lambda\phi$, with $\phi(0) = 0$ and $\phi(\frac{3}{2}\pi) = 0$, and $r\frac{d}{dr}(r\frac{d}{dr}g(r)) = 0$ $\lambda q(r)$.

(2) The usual energy argument applied to the two-point boundary value problem

$$
\phi'' = -\lambda \phi, \qquad \phi(0) = 0, \qquad \phi(\frac{3}{2}\pi) = 0,
$$

implies that λ is non-negative. If $\lambda = 0$, then $\phi(\theta) = c_1 + c_2\theta$ and the boundary conditions imply $c_1 = c_2 = 0$, i.e., $\phi = 0$, which in turns gives $u = 0$ and this solution is incompatible with the boundary condition $u(3, \theta) = 18 \sin(2\theta)$. Hence $\lambda > 0$ and

$$
\phi(\theta) = c_1 \cos(\sqrt{\lambda}\theta) + c_2 \sin(\sqrt{\lambda}\theta).
$$

(3) The boundary condition $\phi(0) = 0$ implies $c_1 = 0$. The boundary condition $\phi(\frac{3}{2}\pi) = 0$ implies $\overline{\lambda}_{2}^{3}\pi = n\pi$ with $n \in \mathbb{N} \setminus \{0\}$. This means $\sqrt{\lambda} = \frac{2}{3}n$, $n = 1, 2, ...$

(4) From class we know that $g(r)$ is of the form r^{α} , $\alpha \ge 0$. The equality $r \frac{d}{dr} (r \frac{d}{dr} r^{\alpha}) = \lambda r^{\alpha}$ gives $\alpha^2 = \lambda$. The condition $\alpha \ge 0$ implies $\frac{2}{3}n = \alpha = \sqrt{\lambda}$. The boundary condition at $r = 3$ gives $18\sin(2\theta) =$ $c_2 3^{\frac{2}{3}n}\sin(\frac{2}{3}n\theta)$ for all $\theta \in [0,\frac{3}{2}\pi]$. This implies $n=3$ and $c_2=2$.

(5) Finally, the solution to the problem is

$$
u(r, \theta) = 2r^2 \sin(2\theta).
$$

Question 6: Let $p, q : [-1, +1] \longrightarrow \mathbb{R}$ be smooth functions. Assume that $p(x) \geq 0$ and $q(x) \geq q_0$ for all $x \in [-1, +1]$, where $q_0 \in \mathbb{R}$. Consider the eigenvalue problem $-\partial_x(p(x)\partial_x\phi(x)) + q(x)\phi(x) = \lambda\phi(x)$, supplemented with the boundary conditions $\phi(-1) = 0$ and $\phi(1) = 0$.

(a) Prove that it is necessary that $\lambda \geq q_0$ for a non-zero (smooth) solution, ϕ , to exist. (Hint: $q_0 \int_{-1}^{+1} \phi^2(x) dx \leq \int_{-1}^{+1} q(x) \phi^2(x) dx.$

As usual we use the energy method. Let (ϕ, λ) be an eigenpair, then

$$
\int_{-1}^{+1} (-\partial_x(p(x)\partial_x\phi(x))\phi(x)+q(x)\phi^2(x))\mathrm{d}x=\lambda \int_{-1}^{+1} \phi^2(x)\mathrm{d}x.
$$

After integration by parts and using the boundary conditions, we obtain

$$
\int_{-1}^{+1} (p(x)\partial_x \phi(x)\partial_x \phi(x) + q(x)\phi^2(x))\mathrm{d}x = \lambda \int_{-1}^{+1} \phi^2(x)\mathrm{d}x.
$$

which, using the hint, can also be re-written

$$
\int_{-1}^{+1} (p(x)\partial_x \phi(x)\partial_x \phi(x) + q_0 \phi^2(x)) \mathrm{d}x \le \lambda \int_{-1}^{+1} \phi^2(x) \mathrm{d}x.
$$

Then

$$
\int_{-1}^{+1} p(x) (\partial_x \phi(x))^2 dx \le (\lambda - q_0) \int_{-1}^{+1} \phi^2(x) dx.
$$

Assume that ϕ is non-zero, then

$$
\lambda - q_0 \ge \frac{\int_{-1}^{+1} p(x) (\partial_x \phi(x))^2 dx}{\int_{-1}^{+1} \phi^2(x) dx} \ge 0,
$$

which proves that it is necessary that $\lambda \ge q_0$ for a non-zero (smooth) solution to exist.

(b) Assume that $p(x) \ge p_0 > 0$ for all $x \in [-1, +1]$ where $p_0 \in \mathbb{R}_+$. Show that $\lambda = q_0$ cannot be an eigenvalue, i.e., prove that $\phi = 0$ if $\lambda = q_0$. (Hint: $p_0 \int_{-1}^{+1} \psi^2(x) dx \le \int_{-1}^{+1} p(x) \psi^2(x) dx$.)

Assume that $\lambda = q_0$ is an eigenvalue. Then the above computation shows that

$$
p_0 \int_{-1}^{+1} (\partial_x \phi(x))^2 dx \le \int_{-1}^{+1} p(x) (\partial_x \phi(x))^2 dx = 0,
$$

which means that $\int_{-1}^{+1}(\partial_x\phi(x))^2{\rm d}x=0$ since $p_0>0$. As a result $\partial_x\phi=0$, i.e., $\phi(x)=c$ where c is a constant. The boundary conditions $\phi(-1) = 0 = \phi(1)$ imply that $c = 0$. In conclusion $\phi = 0$ if $\lambda = q_0$, thereby proving that (ϕ, q_0) is not an eigenpair.

Question 7: Use the Fourier transform technique to solve $\partial_t u(x,t) + \sin(t)\partial_x u(x,t) + (2+3t^2)u(x,t) =$ $0, x \in \mathbb{R}, t > 0$, with $u(x, 0) = u_0(x)$. (Use the shift lemma: $\mathcal{F}(f(x - \beta))(\omega) = \mathcal{F}(f)(\omega)e^{i\omega\beta}$ and the definition $\mathcal{F}(f)(\omega) := \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x)e^{i\omega x} dx$

Applying the Fourier transform to the equation gives

$$
\partial_t \mathcal{F}(u)(\omega, t) + \sin(t)(-i\omega)\mathcal{F}(u)(\omega, t) + (2 + 3t^2)\mathcal{F}(u)(\omega, t) = 0
$$

This can also be re-written as follows:

$$
\frac{\partial_t \mathcal{F}(u)(\omega, t)}{\mathcal{F}(u)(\omega, t)} = i\omega \sin(t) - (2 + 3t^2).
$$

Then applying the fundamental theorem of calculus between 0 and t , we obtain

$$
\log(\mathcal{F}(u)(\omega,t)) - \log(\mathcal{F}(u)(\omega,0)) = -i\omega(\cos(t)-1) - (2t+t^3).
$$

This implies

$$
\mathcal{F}(u)(\omega, t) = \mathcal{F}(u_0)(\omega)e^{-i\omega(\cos(t)-1)}e^{-(2t+t^3)}.
$$

Then the shift lemma gives

$$
\mathcal{F}(u)(\omega, t) = \mathcal{F}(u_0(x + \cos(t) - 1)(\omega)e^{-(2t + t^3)}.
$$

This finally gives

$$
u(x,t) = u_0(x + \cos(t) - 1)e^{-(2t + t^3)}.
$$