Quiz 4 (Notes, books, and calculators are not authorized)

Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with **no justification will not be graded**.

## Question 1:

**Question 2:** Consider  $f: [-L, L] \longrightarrow \mathbb{R}$ ,  $f(x) = x^4$ . (a) Sketch the graph of the Fourier series of f and the graph of f.



(b) For which values of  $x \in \mathbb{R}$  is FS(f) equal to  $x^4$ ? (Explain)

The periodic extension of  $f(x) = x^4$  over  $\mathbb{R}$  is piecewise smooth and globally continuous since f(L) = f(-L). This means that the Fourier series is equal to  $x^4$  over the entire interval [-L, +L].

(c) Is it possible to obtain  $FS(x^3)$  by differentiating  $\frac{1}{4}FS(x^4)$  term by term? For which values is this legitimate? (Explain)

Yes it is possible since the periodic extension of  $f(x) = x^4$  over  $\mathbb{R}$  is continuous and piecewise smooth. This operation is legitimate everywhere the function  $FS(x^3)$  is smooth, i.e., for all the points in  $\mathbb{R}\setminus\{2k-1, k\in\mathbb{Z}\}$  (i.e., one needs to exclude the points  $\ldots, -7, -5, -3, -1, +1, +3, +5+7, \ldots$ 

Question 3: Let *L* be a positive real number. Let  $\mathbb{P}_1 = \operatorname{span}\{1, \cos(\pi t/L), \sin(\pi t/L)\}$  and consider the norm  $\|f\|_{L^2} := \left(\int_{-L}^{L} f(t)^2 dt\right)^{\frac{1}{2}}$ . (a) Compute the best approximation of  $h(t) = 2\cos(\pi t/L) + 7\sin(3\pi t/L)$  in  $\mathbb{P}_1$ .

The function  $h(t) - 2\cos(\pi t/L) = 7\sin(3\pi t/L)$  is orthogonal to all the members of  $\mathbb{P}_1$  since the functions  $\cos(m\pi t/L)$  and  $\sin(m\pi t/L)$  are orthogonal to both  $\cos(n\pi t/L)$  and  $\sin(n\pi t/L)$  for all  $m \neq m$ ; as a result, the best approximation of h in  $\mathbb{P}_1$  is  $2\cos(\pi t/L)$ . (Recall that the best approximation of h in  $\mathbb{P}_1$  is such that  $\int_{-L}^{L} (h(t) - FS_1(h))p(t)dt = 0$  for all  $p \in \mathbb{P}_1$ .) In conclusion

$$FS_1(h) = 2\cos(\pi t/L).$$

(b) Compute the best approximation of 2 - 3t in  $\mathbb{P}_1$  with respect to the above norm. (Hint:  $\int_{-L}^{L} t \sin(\pi t/L) dt = 2L^2/\pi$ .)

We know from class that the truncated Fourier series

$$FS_1(t) = a_0 + a_1 \cos(\pi t/L) + b_1 \sin(\pi t/L)$$

is the best approximation. Now we compute  $a_0$ ,  $a_1$ ,  $a_2$ 

$$a_{0} = \frac{1}{2L} \int_{-L}^{L} (2 - 3t) dt = 2,$$
  

$$a_{1} = \frac{1}{L} \int_{-L}^{L} (2 - 3t) \cos(\pi t/L) dt = 0$$
  

$$b_{1} = \frac{1}{L} \int_{-L}^{L} (2 - 3t) \sin(\pi t/L) dt = \frac{1}{L} \int_{-L}^{L} -3t \sin(\pi t/L) dt = -6 \cos(\pi) \frac{L}{\pi} = -\frac{6L}{\pi}.$$

As a result

$$FS_1(t) = 2 - \frac{6L}{\pi}\sin(\pi t/L)$$