3 Squares, 2 Cardioids and a Circle: Using GeoGebra to Investigate an Interesting Geometry Problem

Thomas J. Clark

University of Nebraska-Lincoln

November 15, 2012

Thomas J. Clark (UNL)

November 15, 2012 1 / 14

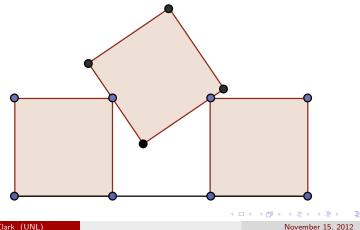
What I'm not Talking about Today:

"I am, and will ever be a white-socks, pocket protector, nerdy engineer, born under the second law of thermodynamics, steeped in steam tables, in love with free-body diagrams, transformed by Laplace and propelled by compressible flow."

- Neil Armstrong (1930-2012)

How Low Can You Go?

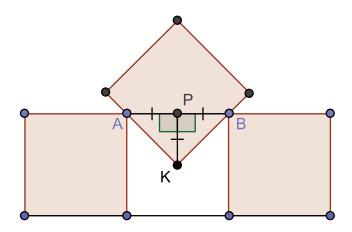
If the top square is allowed to slide, what is the lowest point the bottom corner can reach?



3 / 14

The Solution

In the Middle



Thomas J. Clark (UNL)

November 15, 2012 4 / 14

- 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Proof by Path

What is the path of the lowest corner point?

- 2

イロン イヨン イヨン イヨン

Proof by Path

What is the path of the lowest corner point?

We can use GeoGebra to trace the path...

3

イロト イヨト イヨト イヨト

Proof by Path

What is the path of the lowest corner point?

We can use GeoGebra to trace the path...

Analytic Geometry Proof:

$$(x - .5)^{2} + y^{2} + (x + .5)^{2} + y^{2} = 1$$

 $2x^{2} + 2y^{2} + 1/2 = 1$
 $x^{2} + y^{2} = 1/4$

Geometric Insight Proof:

The line segment \overline{AB} is fixed diameter. The path traced out by point K is the locus of all points that form a right angle with the points A and B. A circle is the unique curve which satisfies that property, so the path must be a circle.

イロト イ押ト イヨト イヨト

• What about the paths of the other points?

(日) (周) (三) (三)

- 31

- What about the paths of the other points?
- How high does the top corner go?

- 3

・ロン ・四 ・ ・ ヨン ・ ヨン

- What about the paths of the other points?
- How high does the top corner go?
- What paths do the left and right corners trace?

3

イロト イヨト イヨト

- What about the paths of the other points?
- How high does the top corner go?
- What paths do the left and right corners trace?

Let's use GeoGebra to investigate these questions.

3

(日) (同) (三) (三)

What do you remember about cardioids?

- 2

・ロン ・四 ・ ・ ヨン ・ ヨン

What do you remember about cardioids?

- Polar Equation: $r = 2a(1 \cos \theta)$.
- Traced by a fixed point on a circle, as it rolls around a circle of the same radius.

- 31

・ロン ・四 ・ ・ ヨン ・ ヨン

What do you remember about cardioids?

- Polar Equation: $r = 2a(1 \cos \theta)$.
- Traced by a fixed point on a circle, as it rolls around a circle of the same radius.

Can we connect either one of of these notions of a cardioid to our problem to prove that the corners do in fact trace out cardioids?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What do you remember about cardioids?

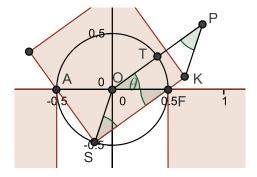
- Polar Equation: $r = 2a(1 \cos \theta)$.
- Traced by a fixed point on a circle, as it rolls around a circle of the same radius.

Can we connect either one of of these notions of a cardioid to our problem to prove that the corners do in fact trace out cardioids?

In fact we can do both.

Rolling Circles Gather No Moss

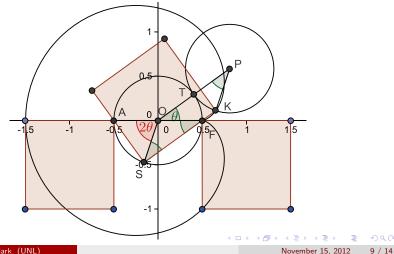
Since there already is a circle in the problem, let's begin by showing that the corner point lies on a circle which rolls around the central circle.



By standard theorems from Geometry, all the marked angles are congruent, and this shows that the circle through K about P is rolling.

Finding the Formula

In the standard formula, $r = 2a(1 - \cos \theta)$, the cusp point must be the origin, so in the diagram that is the point *F*.



Finding the Formula

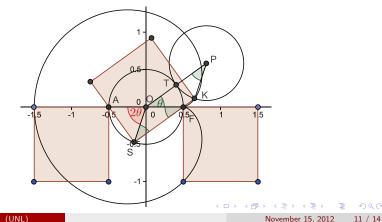
Think of *F* as the 'origin'. From this perspective the point *K* has polar coordinates (r, θ) , where *r* is to be determined. Using right triangle trigonometry, the point *S* is $\frac{1}{2}\cos(2\theta)$ units to the left of *O* and $\frac{1}{2}\sin(2\theta)$ units down. So with *F* as the origin, *S* has Cartesian coordinates $(-\frac{1}{2} - \frac{1}{2}\cos(2\theta), -\frac{1}{2}\sin(2\theta))$. Thus the distance squared d^2 from the origin *F* to *S* is

$$d^{2} = \left(-\frac{1}{2} - \frac{1}{2}\cos(2\theta)\right)^{2} + \left(-\frac{1}{2}\sin(2\theta)\right)^{2}$$
$$= \frac{1}{4} + \frac{1}{2}\cos(2\theta) + \frac{1}{4}\cos^{2}(2\theta) + \frac{1}{4}\sin^{2}(2\theta)$$
$$= \frac{1 + \cos(2\theta)}{2} = \cos^{2}(\theta).$$

イロト 不得 トイヨト イヨト 二日

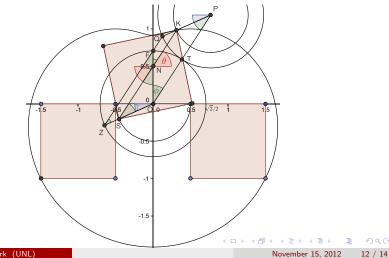
Finding the Formula

Thus $d = |\cos(\theta)|$. In fact for any θ , the directed distance from F to S is $d = -\cos(\theta)$. Thus adding 1, the length of the edge, to d gives us the position of K in direction of θ . That is K has polar coordinates $r = 1 - \cos(\theta)$, the equation of a cardioid.



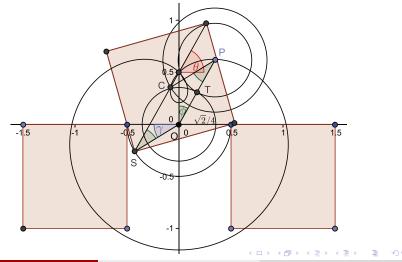
Did You Say Limaçon?

One can similarly prove that the top corner traces out a Limaçon, but I'll spare you the details...



Another Limaçon

The point C at the center of the square also traces out a Limaçon.



Thomas J. Clark (UNL)

November 15, 2012 13 / 14

Thank You for Coming

• GeoGebra is available free from www.GeoGebra.org

3

イロト イヨト イヨト